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Econometrica, Vol. 65, No. 3 (May, 1997), 557-586

INSTRUMENTAL VARIABLES REGRESSION WITH
WEAK INSTRUMENTS

By DoucLAs STAIGER AND JaMmes H. Stock!

This paper develops asymptotic distribution theory for single-equation instrumental
variables regression when the partial correlations between the instruments and the
endogenous variables are weak, here modeled as local to zero. Asymptotic representations
are provided for various statistics, including two-stage least squares (TSLS) and limited
information maximum likelihood (LIML) estimators, Wald statistics, and statistics testing
overidentification and endogeneity. The asymptotic distributions are found to provide
good approximations to sampling distributions with 10-20 observations per instrument.
The theory suggests concrete guidelines for applied work, including using nonstandard
methods for construction of confidence regions. These results are used to interpret
Angrist and Krueger’s (1991) estimates of the returns to education: whereas TSLS
estimates with many instruments approach the OLS estimate of 6%, the more reliable
LIML estimates with fewer instruments fall between 8% and 10%, with a typical 95%
confidence interval of (5%, 15%).

KEYWORDSs: Two stage least squares, LIML, overidentification tests, endogeneity tests.

1. INTRODUCTION

IN EMPIRICAL WORK using instrumental variables (IV) regression, often the
partial correlation between the instruments and the included endogenous vari-
able is low, that is, the instruments are weak. It is our impression that, in
applications of two-stage least squares (TSLS), it is common for the first stage F
statistic, which tests the hypothesis that the instruments do not enter the first
stage regression, to take on a value less than 10.?> Unfortunately, it is well known
that standard asymptotic approximations to the distributions of the main instru-
mental variables statistics break down when the mean of this F statistic is small.
Recently this has been highlighted for TSLS in quite different settings by Nelson
and Startz (1990a,b) using a short sample and a single instrument and by Bound,
Jaeger, and Baker (1995) using up to 180 instruments and over 329,000 observa-
tions. Both Nelson and Startz and Bound, Jaeger, and Baker find that the TSLS
estimator is biased in the direction of the ordinary least squares (OLS) estima-
tor, and that the TSLS standard error is small relative to the bias. While a large
literature on finite-sample distribution theory has tackled these departures from

! The authors thank Joshua Angrist, John Bound, Adolph Buse, Gary Chamberlain, Jean-Marie
Dufour, Jerry Hausman, Guido Imbens, Tom Kane, Alan Krueger, Tom Rothenberg, Richard Startz,
and three anonymous referees for helpful discussions and/or comments on earlier drafts, and
Matthew Eichner and Jonathan Wright for research assistance. The research was supported in part
by National Science Foundation Grant No. SES-91-22463.

21t is difficult to provide systematic evidence on this because first stage F statistics are often not
reported. For examples, our review of articles published in the American Economic Review between
1988 and 1992 found 18 which used TSLS but none reported first-stage F’s or partial R%’s. In each
of the 18 articles, econometric inference was performed using the standard normal approximations.
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558 D. STAIGER AND J. H. STOCK

conventional asymptotics, the finite-sample approach has several drawbacks
which impede its use in practice, including the restrictive assumptions of fixed
instruments and Gaussian errors, unwieldy expressions for distributions which
can be computationally intractable, a focus on estimators rather than tests or
confidence intervals, and the failure to produce clear quantitative guidelines
which empirical researchers can follow.

This paper develops an alternative asymptotic framework for approximating
distributions of statistics in single-equation IV regression with n endogenous
regressors. Conventional asymptotics, both first-order and higher-order such as
Edgeworth expansions (cf. Anderson and Sawa (1973, 1979), Morimune (1983,
1989), and Rothenberg (1984)), treat the coefficients on the instruments in the
first stage as nonzero and fixed, an assumption which implies that each first
stage F statistic increases to infinity with the sample size. Not surprisingly, when
the means of these F statistics are small, these asymptotic approximations break
down. We therefore adopt a device which, loosely speaking, holds the F
statistics constant in expectation as the sample size increases. More precisely,
the coefficients on the instruments in the first stage equation are modeled as
being in a T~!/? neighborhood of zero; this will be referred to as the “weakly
correlated” case. Based on this alternative framework, we derive the asymptotic
representations for a number of IV estimators and test statistics, including tests
of overidentifying restrictions and tests of exogeneity.

This paper makes three main contributions to the econometric theory of IV
regression. First, the finite sample distribution of the TSLS estimator and of the
LIMLK approximation to the LIML estimator (cf. Anderson (1977)), previously
derived assuming fixed exogenous regressors and normal errors, is shown to
apply asymptotically to the TSLS and LIML estimators, respectively, under
general conditions (stochastic regressors and nonnormal errors) when instru-
ments are weak. This extends the finite sample results to a much broader set of
applications. Second, joint asymptotic representations, for which there are no
counterparts in the finite sample literature, are obtained for many IV test
statistics. Third, these representations facilitate summarizing in a few figures the
relationship of estimator bias and test size to population parameters in a wide
range of cases.

The paper makes three further contributions relevant to empirical work. First,
the forms of exogeneity tests and overidentification tests which are asymptoti-
cally equivalent under conventional asymptotics are not equivalent with weak
instruments, and the asymptotic results provide concrete guidance about which
tests have greatest power and least size distortions in this case. Second, whereas
conventional confidence intervals can be unreliable in the weakly correlated
case, we provide several alternative methods of forming confidence intervals that
are asymptotically valid with weak instruments. Finally, we provide justification
for a readily computed estimator of the maximal bias of TSLS relative to OLS.

These results are used to reexamine Angrist and Krueger’s (1991) important
study of the returns to education. Using quarter of birth and its interactions with
other covariates as instruments for education in an earnings equation, they

This content downloaded from 150.108.71.38 on Thu, 25 Jan 2018 20:12:17 UTC
All use subject to http://about.jstor.org/terms



INSTRUMENTAL VARIABLES REGRESSION 559

concluded that OLS estimates are unbiased or perhaps understate the returns to
education. However, in several of their specifications, the first stage F statistic is
less than 5. Our asymptotic results suggest that TSLS estimates and confidence
intervals are unreliable with F’s this small even with more than 329,000
observations, and instead Anderson-Rubin (1949) and Bonferroni regions are
more reliable. Based on our preferred statistics, we estimate returns to educa-
tion which are higher, and confidence intervals which are wider, than suggested
by Angrist and Krueger.

The literature on the distribution of instrumental variables estimators is large;
recent contributions include Bekker (1994), Buse (1992), Choi and Phillips
(1992), Hillier (1990), Magdalinos (1990, 1994), Morimune (1989), and Phillips
(1989). Mariano (1982) and Phillips (1983) survey earlier contributions. The
relationship of our theoretical results to this literature is discussed in Section 3.
Our central innovation is the introduction and study of the weakly correlated
case. The work most closely related to ours is Bekker (1994), Phillips (1989), and
Choi and Phillips (1992). Bekker (1994) develops asymptotics for TSLS and
LIML estimators (but not test statistics) in the fixed instruments /Gaussian case
where, following Anderson (1976) and Morimune (1983), the number of instru-
ments grows in proportion to the number of observations, whereas we keep the
number of instruments fixed; Bekker’s (1994) limiting approximations are nor-
mal, whereas ours are in general nonstandard. Phillips (1989) and Choi and
Phillips (1992) study TSLS asymptotics with fixed parameters in the partially
identified case (some linear combinations of the instruments are exactly uncor-
related while others are highly correlated; cf. Sargan (1983) for related work on
nonlinear models); in contrast we consider the case that the instruments are
weakly correlated, in which exactly uncorrelated instruments are a special case.

The paper is organized as follows. In Section 2, the basic ideas are set out and
applied to the TSLS estimator with » =1 and no other regressors. Results for
estimators and tests for general n are developed in Section 3. Nonstandard
interval estimators are studied in Section 4. Monte Carlo experiments which
check the quality of the asymptotic approximation to the finite sample distribu-
tions are summarized in Section 5. Section 6 presents the main numerical
results, including plots of asymptotic bias and coverage rates. Angrist and
Krueger’s (1991) data are used in Section 7 to study the returns to education.
Section 8 concludes with some lessons for empirical practice.

2. THE MODEL AND AN EXAMPLE
A. The Model, Assumptions, and Notation

In matrix notation, the model considered is
2.1) y=YB+Xy+u,

2.2 Y=ZII+XD+V,

This content downloaded from 150.108.71.38 on Thu, 25 Jan 2018 20:12:17 UTC
All use subject to http://about.jstor.org/terms



560 D. STAIGER AND J. H. STOCK

where (2.1) is the structural equation of interest, y and Y are respectively a
T X 1 vector and a T X n matrix of T observations on the endogenous variables,
(2.2) is the reduced form equation for Y, X is the T XK, matrix of K,
exogenous regressors, Z is the 7 X K, matrix of K, instruments, u and V' are
respectively a T X 1 vector and a T X n matrix of error terms, and 8, v, II, and
@ are unknown parameters. The errors (u, VY, where u, denotes the tth
observation on u, etc., are assumed to have mean zero, to be serially uncorre-
lated, and to be homoskedastic with covariance matrix 3, partitioned so that
Eu’=o,, EViu,=3,, and EVV/=5,,. Let Z=[X Z) and let Q=EZ,Z,,
partitioned so that EX, X =Qy,, EX,Z,=Qy,, and EZ,Z;=(Q,,. Also let
p=3,/%3,, 0.1/2 It is assumed throughout that EZ(u, V) =0 and that n,
K,, and K, are fixed. With the sole exception of the local power analysis of tests
of overidentifying restrictions in Section 3C, (2.1) and (2.2) are assumed to hold
throughout.

We .are interested in inferences about B8 and y when the instrument Z is
weakly correlated with Y, specifically when the mean of the first stage F statistic
testing IT= 0 in (2.2) is small or moderate even if T is large. If IT is modeled as
fixed, this F statistic tends to infinity with T, which suggests why conventional
fixed-I1 asymptotics provide poor approximations with weak instruments. In
contrast, if IT is modeled as local to zero, this F statistic is 0p(1). We therefore
make the following assumption.

ASSUMPTION L;: IT=IT, = C/ VT, where C is a fived K, X n matrix.

Rather than make primitive assumptions on the errors and exogenous vari-
ables, we instead assume moment conditions which they must satisfy. This
permits the subsequent application of the results in either time series or cross
sectional settings, where the primitive assumptions typically differ. Let “ ="
denote convergence in distribution.

ASSUMPTION M: The following limits hold jointly:
i
@ Wu/T,V'u/TV'V/T) > (0,,, 3., 2
(b) Z’Z/T it 0;
© (T™V2X'u, T"V2Z'u, T V2X'V, T-V2Z'V) = Fys Ygur Yuvr ¥iu)s
where V= (Vy,,, ¥y, vec(Wy Y, vec(W, )Y is distributed N0, 3 ® Q).

These conditions hold under various weak primitive assumptions. For exam-
ple, if (u, V) is a homoskedastic vector martingale difference sequence with
respect to the filtration based on {u;_,,V;_,, X}, Z;, j <1}, if u, and V; have four
moments, and if X, and Z, are integrated of order zero with four moments and
satisfy weak conditions limiting dependence, then (a) and (b) follow from the

weak law of large numbers and (c) follows from the central limit theorem for
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INSTRUMENTAL VARIABLES REGRESSION 561

martingale difference sequences. These conditions arguably apply to linear
rational expectations models such as the consumption Euler equation estimated
using TSLS by Campbell and Mankiw (1989).3

Before proceeding we provide some additional definitions and notation.
Let P, =WW'W) 'W’' and My, =I— P, where W is a general a X b matrix
with a > b, and let “* ”” denote the residuals from the projection on X, so Z* =
MyZ, Y+=M,Y, etc. Let X=[Y X] and 17=[y Y], and let I, denote the
k-dimensional identity matrix. Define A =0Y2C3,}/?, where Q=0,,—
Q7xQxxQxzs 24 = 9_1/2'(11’214 — 07xCxx¥x) o'’ 2’ and z, =072V, -
Q,xO0x+Wy )3, }/% The random variable [z}, vec(z,)'] is distributed NO,3®
I ), where X is the (n + 1D X (n+ 1) matrix with 3, =1, 3,,= , Sp=p
and 3, = p, where 3 is partitioned conformably with 3. Finally, let

(23a) v,=(A+z,)(A+2z),
23b) v,=(A+z,)z,.

If ¥, is nonzero, then Y is endogenous and the OLS estimator of 3, ,éOLS,
is inconsistent. Let B, denote the true value of 8 and let =3, 3,,. Then,
under Assumptions L and M,

(24 Pos > By + 6.

Note that 6 can alternatively be expressed in terms of the vector of correlations
between the first and second stage errors, 8= ¢ /23, /%, so that if p+# 0 then
OLS is inconsistent.

Most of the theorems in Section 3 are developed for the general k-class
estimator, A(k), and associated tests. However, for clarity we will often use
familiar subscripts, ¢.g. BTSLS for B(D).

B. An Example: The TSLS Estimator with n = 1 and no X’s

Consider the special case of ﬁTSLS when n =1 and K, = 0. By Assumptions
L, and M,

T-\272y=T"Y7Z(ZII+V)
=(T'ZZ)C+TZV=0Q,,C+V¥,,.
Thus
Y'P,Y=(T"V2Y'Z) T~ '2'2) (T~V?2'Y)
= (0,,C+ V) 0;,(0,,C + ¥yy)
SV (A +z2, ) (A +2,) 37
3 These conditions could be extended to deterministic trends (by adopting a diagonal scaling

matrix of the form diag(7?/2,T)) and to autocorrelated errors. Both extensions are conceptually
straightforward but would complicate notation and thereby obscure the main results.
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562 D. STAIGER AND J. H. STOCK

Similarly, Y'P,u=(Q0,,C+ ¥,,)0,)¥,, =0 *SV?(A+2z,)z,. These ex-
pressions and the definitions (2.3) yield

(2.5)  Brsis — By = (Y'P,Y) '(Y'Pyu) = 0,)/235 1/ i 'v, = Bigis.

Equation (2.5) expresses frgs — B, as, asymptotically, the ratio of quadratic
forms in the two K, X1 jointly normal random variables, z, and z,. This
limiting distribution can be expressed as the random mixture of normals,
IN(B, + 0m(z,,),var(z,)) dF(z,), where m(z,)=(A+z,)z,/(A+z,)(A+
zy), var(z,) =12/(A+2z,Y(A+z,), and 7=[(1 — p?)a,, /3, 1/? (this follows
by rewriting Bi ¢ in terms of the orthogonalized variable, n=(z, —z,p)/
V1= pp). In particular, the asymptotic bias of éTSLS, relative to the asymptotic
bias of OLS, is

2.6) EB¥,s/0=Em(z,).

Because the distribution of m(z,) depends only on NA/K, and K,,* the
asymptotic bias of TSLS, relative to OLS, depends on XA/K, and K, but not
on 6 or p.

3. ASYMPTOTIC RESULTS IN THE GENERAL CASE
A. k-Class Estimators and Wald Statistics

We now consider general n, K, and K,. The k-class estimator of [ B’ y']’ is
G0 B 3R] = [XU-kMpX] [ X kMp)y].
By standard projection arguments, the k-class estimator of B is
(G2 B =Y U—-kM, Y] Y (I —kM, )yt

Two leading cases of interest are the TSLS estimator, for which & =1, and the
LIML estimator. The LIML estimator is given by (3.1) (equivalently for B, (3.2))
with k= kLIML, where kLIML is the smallest root of the determinantal equation
Y'M,Y —kY'M;Y| =

A standard formula for the Wald statistic testing g linear restrictions R8 =r,
where R is g X n, is

(33) W) =[RAG) —r]R[Y (1 -k, )Y ] _IR’}_l
x[RB(UK) =] /146,,(k)]

* This and subsequent statements about dependence of distributions on only K,, XA/K,, and p
follow from noting that these asymptotic representations are continuous functions of the random
varlable ..0 =[z, (A +z)'[z, (A +z,)], which has the noncentral Wishart distribution

W, (K, 3, A) (Muirhead (1982, pp. 441-442)), where A=3"' A, where A}, = A}, = A,; =0 and
Ay = XA, where A is partitioned conformably with 3. In particular (A +z;, Y(A +z,) ~ W(K,, I,
XA).
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INSTRUMENTAL VARIABLES REGRESSION 563

where &,,(k) =a(kYa(k) /(T — K, —n), where (k) =y — YB(k) — Xy(k)=y+*
-Y+ B(k) Similarly, a standard formula for the ¢ ratio testing the hypothesis
that a single coefficient, B, takes on the value B,y is, £,(k)=[ B,(k) — B,o]/
{{ly *'(I — kM, .)Y *1'6, (k)}'/?, where BY denotes the (i,j) element of B~
for general square nonsingular matrix B (cf. Hall, Cummins, and Schake (1992,
p. 145-146)).

Tests of the hypothesis that IT= 0 play an important role in this development.
Accordingly, let

(34)  Gp=3,/7Y* P, Y 3,1/?
where 3, = Y'M;Y /(T — K, — K,). Note that tr(G,)/nK, is the Wald statistic

testing II=0.
The limiting distributions of these statistics are given in Theorem 1.

THEOREM 1: Suppose that (2.1), (2.2), and Assumptions L;; and M hold. Also
suppose that T(k — 1) = « jointly with the limits in Appendix Lemma A1, where
k= 0,(1) (possibly a constant) Then the following limits hold jointly:

(a) ,B(k) = By = B (k) =al/23, /A% (k), where A¥ (k)= (v, — kI) (v, —
Kp).

®) 6,,(k) = a’(k) = a,,5,(Af(«)), where S;(b)=1—2p'b +b'b.

(¢) Under the null hypothesis RB=r,

W(k) = BF () R RS2, — k1) ' Sp/ 2R
XRB; (k) /[qo (k)]
= 45 () P R RE5 0y = ) S5 2R ]
XRI,/ Ak (k) /1S, (A (k)]
(d) Under the null hypothesis B; = By,

-1 ii —172
L0 = {[50/20n = k) 5] sy} S ),
(e) Gy=v,.

Proofs of all theorems are given in the Appendix.

Theorem 2 provides the limiting behavior of kLIML which, when combined
with Theorem 1, gives the asymptotic distribution of the LIML estimator and
test statistics.

THEOREM 2: Suppose that (2.1), (2.2), and Assumptions L;; and M hold. Then
Tk — 1) = k¥, where KLIML is the smallest root of the determinantal
equation, | 5 — k3| =0, where ¥ = [z, (M +z)1z, (A+z,)], where the con-
vergence is joint with the limits in Appendzx Lemma Al.
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564 D. STAIGER AND J. H. STOCK

When the instruments are weak, in general B(k) is not consistent and has a
nonstandard asymptotic distribution. Moreover, T(key e — 1) has a nondegener-
ate asymptotic distribution so ,BTSLS and BLIML are not equivalent under weak
instrument asymptotics. The asymptotic distributions of the test statistics and
d,,(k) are also nonstandard. The limiting representations in Theorems 1 and 2
depend on g, 2,,, p,and XA/K,, K,, and n. However, K, and n are known
and ¥, and, given p, g, are consistently estimable, so ’A/K, and p are the
only asymptotically unknown parameters entering the distributions.” In some
cases, the dependence on 3y, and o,, disappears, for example, when n =1,
the distributions of ( Brg s — B,)/0 and ( B — By)/ 0 depend only on XA /K,
K,, and | pl, and the distributions of t;¢ ¢ and ¢,y depend only on XA/K,,
K,, and p and their pdf’s are antisymmetric in p. The parameter XA/K, has a
simple interpretation: when n = 1, the first stage F statistic G/K, converges to
a noncentral ,\/132, divided by the number of instruments K,, with noncentrality
parameter XA, and when n > 1, XA is the matrix of noncentrality parameters of
the limiting noncentral Wishart random variable »,. Although XA/K, is identi-
fied, it is not consistently estimable under these asymptotlcs

The results for B(k) extend some known results in the exact distribution
literature for the fixed instrument/Gaussian model. The distribution of the
limiting representation of BTSLS, B¢ (0), is the same as the exact distribution of
BTSLS in the fixed instrument/Gaussian case, obtained by Richardson (1968)
and Sawa (1969) for n =1 and by Phillips (1980) for general n. (This is most
easily seen by noting that ﬁTSLS depends only on the moments in Assumptions
M(b) and M(c) and that, with fixed instruments and Gaussian errors, those
assumptions hold as equalities). Also, the asymptotic distribution of By is the
same as the exact distribution of the so-called LIMLK estimator (an infeasible
estimator which requires the reduced form error covariance matrix to be known)
in the fixed instrument /Gaussian case (cf. Anderson (1977)). Thus Theorems 1
and 2 extend the finite sample result for estimators previously derived under the
highly restrictive fixed instrument/Gaussian assumptions to the more general
conditions which lead to Assumption M. While existing formulas for estimator
distributions typically involve multiple infinite series expansions, the representa-
tions given here provide a simple framework for numerical evaluation of joint
asymptotic distributions by Monte Carlo simulation. Finally, although LIML and
LIMLK differ when the concentration parameter, of which XA is the probability
limit in our notation, and T are finite, Anderson (1977) showed that for n =1
the exact fixed instrument/Gaussian LIML and LIMLK distributions converge
as the concentration parameter increases to infinity (with K, and T fixed).
Theorem 2 extends this result by implying that the LIML and LIMLK distribu-
tions converge as T — « for fixed X'A/K, and general » under Assumption L.

The representations of the Wald and ¢ statistics have no counterpart in the
exact distribution literature, since these statistics have not yielded to finite-

*Given p, g, can be estimated consistently by G, o s/(1 — pp), where 6, ors = G, (0).

This content downloaded from 150.108.71.38 on Thu, 25 Jan 2018 20:12:17 UTC
All use subject to http://about.jstor.org/terms



INSTRUMENTAL VARIABLES REGRESSION 565

sample analysis (cf. Mariano (1982)), so these approximations are new even in
the fixed instrument/Gaussian case. Because the ¢ statistic does not have a
normal asymptotic distribution, confidence intervals constructed as +1.96 stan-
dard errors will not in general have a 95% coverage rate, even asymptotically.
Rather, the limiting representation of #(k) indicates that the distribution de-
pends on p in a complicated way, not just as a mean or scale shift. Thus
confidence belts will depend nonlinearly on p. Worse, this distribution also
depends on AMA/K,, so that the confidence belts must be indexed by XA/K,.
Because NA/K, is not consistently estimable, W(k) and #(k) cannot be inverted
directly to construct asymptotic confidence regions for B.

The limiting distributions in Theorem 1 simplify to the conventional asymp-
totic results when XA is large and K, is fixed. Consider the TSLS estimator for
general n and p. If XA is large, then v, =)\')\+0p(l|)\’)\lll/ 2)-I-Op(l) (where
||Bl| = max; lei, jl) and v, =Xz, + 0p(1), so the distribution of BF(1) is approxi-
mately N(0,(3}/*XA3}) " lo,,), which is the standard fixed-IT asymptotic
normal aPproximation for Brgs. Similarly, 6,(1)=c,[1+ OP(IIX)\II_I/ )+
OP(H)\’)\II_ )], so the limit of W(1) in Theorem 1(c) is well approximated by a
x;/4q; the usual result.”

B. Measures of Bias of the TSLS Estimator

Sargan (1958) reported that the bias of TSLS was of the order of the inverse
of the minimum population canonical correlation between Y and Z. The sample
minimum canonical correlation has also been discussed in the context of
identification and testing for instrument relevance (Sargan (1958), Bowden and
Turkington (1984)). Bekker (1994) interpreted it as a measure of TSLS relative
bias in the fixed instrument/Gaussian model with K, — <. This section provides
an asymptotic interpretation of this statistic as a measure of the bias resulting
from weak instruments. ) R

Consider the squared bias of Brg ¢ relative to By g in OLS standard error
units,

(3.5 B?= (EBATSLS_BO),ZY*Y*(EéTSLS_BO)/
(EéOLS - Bo)/ Zyiye (EBAOLS - Bo) - p'W'hp/pp

where A =E[v;'(A+2z,)z,] and 3, .. =plim(Y*'Y* /T) (under Assump-
tion L, but not in general, 3, .,.=23,,). An advantage of this measure is

% Another special case of interest is when XA = 0. Then the results in Theorem 1 simplify to those
obtained using fixed-IT asymptotics with IT= 0 by Phillips (1989) and Choi and Phillips (1992). With
many irrelevant instruments and/or | p| nearly one, frg s tends to fall in a tight neighborhood of
By + 6, and its estimated standard error is typically “too small,” so tests based on tg g incorrectly
reject the null too often. Also, Theorem 2 is readily extended to modified LIML estimators. For
example, Fuller (1977) proposed using k= kypy — /(T — K, —K,) (cf. Morimune (1983)); for
fixed K, and K, T(k; — 1) = sl — 1.
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566 D. STAIGER AND J. H. STOCK

that it is invariant to the transformation (Y, B, II,®,V) = (YA, A~ '8, I1A,
®A,VA), a special case of which is a change in the units of Y. For n > 1,
numerical evaluation of B requires knowledge of p. Typically a candidate value
of p is unavailable, so it is desirable to have a measure of the total relative bias
which does not depend on p. This can be done by considering the worst case
squared relative bias. Because numerical evaluation of 4 is somewhat cumber-
some, we make the approximation that, for K, and/or XA/K, large, h =
(Ev)'El(z),+ Mz, 1=(I+ XA/K,)"". Then B? < max,B*=[maxEval(hh)]*
= {minEval(/ + XA/K,)} "% = B%,,. Although XA/K, cannot be consistently es-
timated, 37142 Y Y'P,. Y+ 3,14 = v, and Ev,/K, =1+ XA/K,. This sug-
gests the statistic

N _ -1
(3.6) Bmax={minEval[Y*’ Y (Y HY/T) I/KZ]}

which is K,/T times the inverse of the minimum squared sample canonical
correlation between Y+ and Z*. Note that a statistic which is asymptotically
equivalent under these assumptions (but not if IT is fixed) is

(3.7  B_,, = (minEval(G,;/K,)} .

When n=1, B, =B, =(G,/K,)"!, where G,/K, is the first stage F
statistic testing IT= 0. Under our assumptions, the statistics (3.6) and (3.7) are
asymptotically distributed as the inverse of the minimum of n noncentral
independent y? random variables with noncentrality parameters eig(AXA/K,)
(cf. Anderson (1984)). 3

The statistics B,,,, and B, ,, provide a data based measure of the worst case
bias of TSLS over all p, relative to OLS, after the coefficients have been
transformed by 3;'4%.. An advantage of these statistics is that they are
relatively simple to compute and have a straightforward interpretation, which is
simplest if » = 1 in which case the statistics simply measure relative bias directly
(i.e. not worst case bias). For all 7, it should be recognized that these are only
sample measures and that bias is related to their population counterpart.
Nonetheless, large values of this bias measure should alert the researcher to
potential problems with instrument endogeneity.

C. Tests of Overidentifying Restrictions

This section studies the limiting behavior of two common tests of overidentify-
ing restrictions, which are available when K, > n, under the null and under a
local alternative. The test statistics are TR?> from a regression of the IV
regression residuals on the instruments and exogenous variables (here denoted
breg)> and Basmann’s (1960) test statistics (¢y,). The tests are analyzed for
residuals from a general k-class regression, although TSLS is used most com-
monly in applications. Expressed in y? form, the two statistics differ only in
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INSTRUMENTAL VARIABLES REGRESSION 567

their denominators and are
(3.82) ¢, (k) = [a(k) P, a(k)]/[a(k) ack) /T],
(3.8b) (k) = [2(k) Py a1 /10(kY My (k) /(T — K, — K.

Even with normal errors these statistics (divided by K,) do not have exact F
null distributions.

The power of these tests against violations of the orthogonality conditions are
investigated by deriving their asymptotic representations under the local alterna-
tive:

ASSUMPTION L : y=YB+ Xy+ Zw+u, where o= w;=T"1/?d, where d is a
K,-vector of constants.

(This assumption is used only in this subsection.) The null hypothesis is that
o = 0. The local alternative in Assumption L, is the natural one under standard
fixed-II asymptotics, and it also delivers a nontrivial representation for the
statistics (3.8) under Assumption L;:

THEOREM 3: Suppose that (2.2) and Assumptions M, Ly, and L, hold. Let
g 0 1/2 dO'_ 1 /2

(a) Further suppose that T(k — 1) = « jointly with the limits in Appendix Lemma
Al, where k= 0 (1) (possibly a constant). Then (i) B(k) — B, = B (k), where
B (k) = 0,3/ °3, 1/ AF (&), where Af(xk) = (v, — kL) (2, + M (z, + &) — kpl;
and (i) ¢pys breg = Sy(AF (), £)/S(Af (k) and g, — breg 5 0, where
Sy(b,e)=[z,— (A +zV)b +cllz,— (A +zV)b +cl

(0) Ty — D = kfnr, ¢» where iy ¢ is the smallest root of the determi-
nantal equation, |5;* — k3|=0, where Er =z, + A +z,)l(z, + EXA+
z,,)], where the convergence is joint with the limits in Appendix Lemma A1.

Theorem 3(a)(i) elucidates the bias of the TSLS estimator when there are
small violations of the orthogonality restrictions. If X'A is large and X¢ is small,
then these small violations impart negligible bias. In the completely unidentified
case, the presence of nonzero d increases the spread of the distribution but does
not affect the bias.

The Basmann and regression tests are asymptotically equivalent under the
null and the local alternative. Inspection of the expression for §, reveals that for
general XA /K2 neither test has g )( asymptotlc null distribution under L;:
although z, is normally distributed, :BTSLS is 0,(1) which makes the asymptotic
dlStI‘lbuthIl nonstandard.

D. Tests of Exogeneity

The Durbin-Wu-Hausman (DWH) test examines the null hypothesis that Y is
exogenous (that p=0) by checking for a statistically significant difference
between the OLS and TSLS estimates of 8. There are various versions of this
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568 D. STAIGER AND J. H. STOCK

test, three of which are

(3.9) Fown,i = (BTSLS BOLS)I (BTSLS BOLS) (i=1,2,3),

where
V,=(Y*'P, YH™! O, TSLS —(yryH™ Gyu 0Ls>
[(YL'P YT vyt ] Oy, tsLs> and
=[(Y*’PZ¢Y*)_ -(Y+'y+t) ]&uu,OLS

(where G, 155 = 6,,(1) in the notation of (3.3)). Fpyyy , was proposed by Wu
(1973; his Ty statistic) and by Hausman (1978). Fyy 3 was proposed by Durbin
(1954) and will be referred to as the Durbin form of the test.

From Theorem 1 and Lemma A1, these statistics have the limiting representa-
tions

(3.102)  Fpwu; = [45(0) — p1'w,[ 45(0) — p1/8,( 4%(0)) (i=1,2),
(3.10b)  Fowy s = [A5(0) — p1'w,[ A(0) — p1/8,( p).

Because the limits apply for general p, (3.10) yields asymptotic null distributions
and power functions. When XA =0, the limits in (3.10) do not depend on p so
their asymptotic power equals their size. Because the tests are O,(1) for finite
XA/K,, they are not consistent.

Under the null hypothesis p =0, (3.10a) smphﬁes to Fpyy, = ¢/ +
i), 1—1 2, where (= V‘l/z’()\ +2z,)m ~N(,1,) (where n=(z, —
zyp)/ \/1 — pp) and ¢ and v, are independent. Because L/ + vy 1§ )<
e~ xk applying x,? critical values to Fpyy ; and Fpyy , results in asymptoti-
cally conservative tests. Size adjustment of Fpyy, and Fpyy, is infeasible
because their size depends on X'A/K,. In contrast, from (3. 10b) Fpwy 5 has an
asymptotic distribution which is a mixture of noncentral y.’s with random
noncentrallty parameter pA'P, . ,Ap/(1 —pp). Thus, under the null p=0,
Fowy ;= x2, and when XA > 0 the test has power that increases with AA/K,
and with | pl. Under the alternative | p| # 0, S,(4%(0)) — S,( p) is a nonnegative
0,(1) random variable, so Fpyy ; has greater asymptotic power than Fpyyy ; or
Frwy o (cf. Wu (1974)). This suggests using Fpyy ; When instruments are weak.

E. Distribution of k-Class Estimator of the Coefficients on
Exogenous Variables

The asymptotic representation of the k-class estimator of vy, $(k), is exam-
ined in the case that X weakly enters (2.2). Specifically, it is assumed that @ in
(2.2) is local to zero:

ASSUMPTION Lg: @ = @, =T /2H, where H is a fived K, X n matrix.
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INSTRUMENTAL VARIABLES REGRESSION 569

One motivation for this assumption is that if @ is fixed but II is local to zero,
then asymptotically Y and X are multicollinear and 1 is nearly unidentified. In
the fixed-@ case, the regressor moment matrix is asymptotically singular and the
identified and weakly correlated linear combinations need to be treated sepa-
rately, as done by Phillips (1989) in the partially identified case. In contrast,
letting @ be local to zero permits the unified treatment in the next theorem.

THEOREM 4: Suppose that (2.1), (2.2), and Assumptions M, L, and Ly hold,
and that T(k—1)= k jointly with the limits in Appendix Lemma Al, where
k= 0,(1) (possibly a constant). Then,

TV2(§(k) = yy) = 0}/ ?0xx [ 25, — (w+2zx,) A¥ ()], where
p=0x¥"QxzC3/* + Q¥R HZ,/?,
= 0¥ "y, 0,77 and  zy, =03y Py, 3,/7,

where [z’Xu z; vec(zy, ) vec(z,,)']' is distributed N(0, 3 ® I, K, +K,)"

The representation in Theorem 4 combined with the previous results provides
]omt representations of BTSLS, Y1sLs» BUML, and ¥y . Although the expres-
sion in Theorem 4 is complicated, some general observations can be made. Most
importantly, under these assumptions both the TSLS and LIML estimators of vy
are consistent but their asymptotic distributions are nonstandard. In particular,
T'?(4(k) — v,) has an asymptotic mixture of normals distribution which de-
pends on the local parameters H and C. This poses an additional problem for
inference: the distribution of ¥ depends on the extent to which both Z and X
enter the reduced form equation for Y, and although H and C are identified,
neither is consistently estimable.

4. NONSTANDARD CONFIDENCE REGIONS FOR B

A central difficulty for inference is the asymptotic dependence of the estima-
tor and Wald statistic distributions on XA/K,. Because A'A/K, is not consis-
tently estimable, asymptotically valid confidence regions cannot be constructed
by directly inverting ¢ statistics using the distributions from Theorem 1. This
section investigates two solutions to this problem, Anderson-Rubin (1949) (AR)
confidence regions and confidence regions based on Bonferroni’s inequality.

A. Anderson-Rubin Confidence Regions

Anderson and Rubin (1949) suggested testing the null hypothesis B = 3,
using the statistic

(4.1) AT( ,Bo) = ((yl _YL.BO)lPZ*(yl _YL.BO)/KZ}/
{(y* —Ylﬁo)’]\lzl(yl _YL:BO)/(T—'KI _Kz)}'

This content downloaded from 150.108.71.38 on Thu, 25 Jan 2018 20:12:17 UTC
All use subject to http://about.jstor.org/terms



570 D. STAIGER AND J. H. STOCK

If (u, V) areiid. N(0, 2) and X and Z are strictly exogenous, then under the
null A;(By) has an exact Fy ;_g g, distribution, which has a xg /K, limit as
T gets large. This result obtains asymptotically under the more general condi-
tions of Assumption M:

THEOREM 5: Suppose that (2.1), (2.2), and Assumptions L; and M hold.

(a) Under the null hypothesis B = By, Ar(By) = xg./K,.

(b) Under the fixed alternative hypothesis B = B, T( By) = S,(4,0)/
[K,S,(A)], which is distributed as K;' times a noncentral X, with noncentrality
parameter ANAA/S,(A), where A= g,/ I B, — B)).

Theorem 5(a) shows that, as discussed in the fixed instrument /Gaussian case
by Anderson and Rubin (1949), joint confidence regions for B8 can be con-
structed as the set of B, for which A,( B,) fails to reject using the asymptotic
xx,/K; critical values.

Theorem 5(b) implies that the probability that 4,( B,) rejects distant alterna-
tives asymptotes to a value which is typically less than one. For example, for
alternatives of the form B, — B, = ba,./?3;}/% where b is a scalar and ¢ is the
n-vector of 1’s, the noncentrality parameter tends to tANAv/n as b — . Thus
tests based on the AR statistic are not consistent under weak instrument
asymptotics. This accords with the failure of B(k) to concentrate in a decreasing
region.

Variations on this approach are readily analyzed using these techniques. For
example, when the number of instruments is large, the AR statistic involves
projections onto a high-dimensional subspace which could result in reduced
power and thus wide confidence regions. One approach to this problem is to

construct a “split-sample” AR statistic: run the first stage regression using the

first subsample to obtain IT(V, say, then construct (4.1) using the second
subsample, where Z * is replaced by Z * @1V (where Z*® is Z* constructed
using the second subsample).” If the subsamples are randomly selected, if the
two subsample sizes are proportional to 7, and if the data are independently
distributed, then the resulting statistic has a y,>/n limiting distribution under
the null that B= B,. Like the full-sample AR statistic, the split-sample AR
statistic can be inverted to construct asymptotically valid confidence regions.

The AR statistic has power against both 8 # B, and failure of the overidenti-
fying restrictions. Thus if the overidentifying restrictions are false, the intervals
could be tight and could lead a researcher to believe that B is precisely
estimated, when in fact the tight interval reflects the endogeneity of an instru-
ment. Indeed, the AR intervals can be null, as is the case in several specifica-
tions in the empirical application in Section 7.

" We thank Jean-Marie Dufour for suggesting to us the split-sample Anderson-Rubin test.
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B. Bonferroni Confidence Regions

The preceding remarks suggest a role for an asymptotically valid interval
estimator of B that, in contrast to the AR interval estimator, imposes instru-
ment validity as is done in the conventional application of tests based on #(k).
This is pursued here using an approach based on Bonferroni’s inequality. Let

Cyr k(@) denote a 100(1 — ;)% confidence region for NA/K,, and let
Cgjna k(@) denote a 100(1 — az)% confidence region for B, constructed given
NA/K,. The region Cy, /¢ () can be constructed by inverting the noncentral
Wishart distribution of GT The conditional region Cj, A/ x{a,) can be com-
puted by inverting the Wald statistic W(k) in (3.3), given XA/K,. Then a
confidence region for 8 which does not depend on XA/K, is

(4.2) CBB(a) = U)‘,)‘/KZECA’A/Kz(al)CBI)‘,’\/KZ(az)

where a = a, + a,. By Bonferroni’s inequality, the region CJ(a) has confidence
level of at least 100(1 — a)%. Although this approach is theoretically valid for
general n, computational requirements increase sharply with n so we focus on
the case n = 1 henceforth.

When n=1, Cy,, k(@) can be constructed by inverting the noncentral
chi-squared statistic GT The construction of Cg v,k (a,) requires obtaining
asymptotic critical values of W(k) or, since n =1, the k-class ¢ statistic, which
depend on ANA/K, and p. Because §=c )/ ZEVV % and ¢)/?3;1/? is consis-
tently estimable given f,, this requires using a data-dependent mapping from
to p to obtain critical values. The relations &, o 5 = 0,,(1 —p?) and

,[§OLS 5 B, + 6 suggest using
. A R 1/2, A
(4.3) p(By) = (EVV/Uuu,OLS) ( Bovs — Bo)/
A n 1/2
[1 + (EVV/&uu,OLS)( Bors — 30)2] .

Because /() B p(By) =(Zyy/0,,)"?6(By) uniformly in Bo>Cpunsxa2),
constructed as the acceptance region of zrg ¢ given ANA/K,, has asymptotic
confidence level 100(1 — @,)%. Thus the Bonferroni region (4.2) will have
coverage rate of at least 100(1 — a)%.

In the numerical work below, we consider two alternative methods for
constructing (4.2), in which Cg) v, ,x (@,) is alternatively based on the TSLS and
LIML ¢ statistics; the resulting confidence regions are respectively called TSLS
and LIML Bonferroni regions. For both, the first stage confidence interval for
XNA/K, and the second stage confidence interval for B, are equal-tailed, and
a; = a,. Using unequal-tailed intervals or letting «; and «, differ might
improve performance, but these extensions are left to future work.
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5. MONTE CARLO COMPARISON OF ASYMPTOTIC AND FINITE-SAMPLE
DISTRIBUTIONS WHEN 7n =1

Monte Carlo experiments were performed to examine the quality of the

preceding asymptotic approximations to the finite-sample distributions of éTSLS,
trsLss éLIML, and t; ;. When n =1. Because our asymptotic distributions are
exact for éTSLS in the fixed instrument/Gaussian case, two designs that focus
on stochastic instruments and nonnormal errors were considered. The first
(design I) reflects time series applications where the number of instruments is
small and the instruments are stochastic. The errors and instruments were
drawn according to Z, iid. N(0,I) and (u, V) iid. N(0, 3). The second
design (design II) is motivated by cross-sectional applications with a large
number of fixed binary instruments, as in Angrist and Krueger (1991), and
nonnormal errors. In this design, the instruments are Z, =1, where 1, is an
indicator variable which equals one if observation ¢ is in cell j, where ji=
1,..., K, + 1 and the final cell was omitted, and (u,,V,)’ = (£, — 1/V2, (52,
1)/ \/2)/, w h ere (§1t§2t)
N, 3), where 3,,=3,,=1,and 5,,=3%, =vp, p=0. Thus in design II,
(u,,V,)" are scaled centered diagonal elements of a Wishart random variable. An
equal number of observations were drawn from each cell (up to integer con-
straints). In both designs, the true value of B is taken to be zero, which is done
without loss of generality by interpreting the results as pertaining to B - B, The
data are generated according to (2.1) and (2.2) with o,, =3, , =1 and with
X, = 1. Finite sample distributions were computed using 20,000 Monte Carlo
replications. Asymptotic distributions were computed using 100,000 draws of the
random variates appearing in the limiting representations.

Selected asymptotic and finite-sample pdf’s of BLIML (top panel) and 7y
(bottom panel) are plotted in Figure 1 for two cases of interest. The finite
sample results are for T=20K,. The design I case (Figure 1(a), (c)) is similar to
one of the cases examined by Nelson and Startz (1990a,b) and Maddala and
Jeong (1992) and both the asymptotic and finite-sample estimator pdf’s are
bimodal; because K, =1 in this case, TSLS and LIML are equivalent. The
design II case (Figure 1(b), (d)) is similar to a case simulated by Bound et al.
(1995) and estimated by Angrist and Krueger (1991), except that T /K, is much
larger in their cases. In each case the asymptotics provide a good approximation
to the finite-sample distributions, with the differences often nearly indistinguish-
able at the scale of the plot.

The maximum absolute difference between the finite sample and asymptotic
cumulative distributions of BTSLS, trsLss ,BL,ML, and # ;. are given in Table 1
for various parameter values. Even for as few as 5 observations per instrument,
the asymptotic distributions provide good approximations to the sampling distri-
butions for éTSLS and éLIML: over all cases in Table I, the largest differences
between the two estimator cdf’s are .111 for T/K, =5, .050 for T/K, = 10, and
.042 for T /K, = 20. The asymptotic approximations to the distribution of the ¢
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TABLE I
MaxiMUM ABSOLUTE DIFFERENCE BETWEEN FINITE SAMPLE CDF AND AsympTOTIC CDF?

Parameters T/K,=5 T/K,=10 T/K,=20
K, P AA/K; PBrsis trsts Bume fume Brsis frsis BumL ALML BTsLs frsLs BLmL ‘LML
A. Design 1

99 0 0.007 0.075 0.007 0.075 0.008 0.029 0.008 0.029 0.004 0.012 0.004 0.012
99 .25 0.089 0.093 0.089 0.093 0.047 0.046 0.047 0.046 0.025 0.022 0.025 0.022
99 .1 0111 0.087 0.111 0.087 0.050 0.038 0.050 0.038 0.026 0.026 0.026 0.026
.99 10 0.081 0.090 0.081 0.090 0.037 0.059 0.037 0.059 0.021 0.045 0.021 0.045

_ = e

4 99 0 0.007 0.052 0.008 0.025 0.006 0.024 0.005 0.013 0.005 0.008 0.005 0.006
4 99 25 0041 0135 0.032 0.027 0.023 0.085 0.016 0.016 0.012 0.048 0.015 0.015
4 99 1 0.063 0.058 0.030 0.051 0.031 0.041 0.012 0.034 0.021 0.024 0.009 0.024
4 99 10 0.033 0.015 0.015 0.012 0.022 0.010 0.010 0.008 0.010 0.006 0.011 0.009
B

. Design II

4 5 0 0.041 0.080 0.028 0.038 0.027 0.044 0.017 0.021 0.014 0.023 0.007 0.014
4 5 25 0.051 0.061 0.038 0.046 0.025 0.039 0.020 0.024 0.015 0.018 0.013 0.018
4 5 1 0.059 0.039 0.037 0.038 0.034 0.024 0.024 0.023 0.015 0.014 0.013 0.016
4 5 10 0.067 0.051 0.058 0.060 0.041 0.031 0.041 0.043 0.025 0.019 0.025 0.026
100 5 0 0.050 0.048 0.011 0.019 0.029 0.026 0.012 0.011 0.020 0.015 0.004 0.009
100 5 25 0.052 0.045 0.021 0.020 0.031 0.028 0.012 0.013 0.016 0.016 0.013 0.013
100 5 1 0.037 0.034 0.034 0.034 0.027 0.028 0.025 0.026 0.021 0.020 0.022 0.022
100 .5 10  0.067 0.069 0.077 0.077 0.048 0.047 0.050 0.050 0.037 0.038 0.042 0.042

? Entries are the Kolmogorov-Smirnov statistics testing the equality of the two distributions; specifically, sup|Fasy(x) —
Fexact(x)|, where Fuq and Fe,, are the Monte Carlo estimates of the asymptotic and exact finite sample distributions.
Quantiles of this statistic, under the hypothesis that the two population distributions are identical, are: 50%, .0064; 95%,
.0105. Asymptotic distributions were computed using 100,000 replications of the representation in Theorems 1 and 2. Finite
sample distributions were computed using 20,000 replications.

statistic for TSLS and LIML are somewhat less good, but for 7/K, = 10 they
are typically within .03 in both designs.

Finite-sample coverage rates of 95% Bonferroni (both TSLS and LIML, with
a; = a, =.025) and AR confidence intervals were checked for the models in
Table I. For Bonferroni intervals, the lowest coverage rate for 7/K, =10 is
93.4%; for T /K, = 20 coverage is at least 95% and typically is between 96% and
99%. The AR interval coverage rates are between 93% and 95% for T /K, = 20.8

These results suggest that the weak instrument asymptotics provide good
approximations to the finite sample distributions of the estimators and ¢ statis-
tics when exogenous regressors are stochastic and errors are nonnormal, for a
wide range of parameter values including cases previously studied by Nelson and
Startz (1990a,b) and Bound, Jaeger, and Baker (1995). The approximations are

8 Details of these and other unreported results are available from the authors upon request.
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typically good with only ten observations per instrument, and improve as this
ratio increases.

6. NUMERICAL EVALUATION OF ASYMPTOTIC DISTRIBUTIONS AND TEST
POWER FUNCTIONS WHEN n =1

The asymptotic representations can be used to study numerically the proper-
ties of various inferential procedures. This section focuses on four issues: bias of
TSLS and LIML point estimates; coverage rates of conventional TSLS and
LIML confidence intervals; size distortions of tests of overidentifying restric-
tions; and the power of the AR and Bonferroni tests of 8= ;. As in Section 5,
attention is restricted to the case of a single included endogenous variable
(n=1.

A. Estimator Bias

The ratio of the asymptotic TSLS bias to the OLS bias (EBf s/6) and the
ratio of the median LIML bias to the OLS bias (median[ Aj(x{ . )/0] are
plotted in Figure 2 for 2 <K, < 100 and 0 < XA/K, <20 for | p| = .2, .5, and .99.
The relative bias of TSLS does not depend on p and evidently depends more
strongly on AA/K, than on K,. The population counterpart of émax is (1+
XNA/K,)™!, and this provides a good approximation to the TSLS bias for all but
very small values of K,: if K, > 5,max_ v, k, <20l EBisrs/0— (1 + XA/K,) ™|
=.07, while if K, > 10, this maximal approximation error drops to .03. In
contrast to TSLS, BALIML rapidly becomes median unbiased as X'A/K, increases,
particularly for large values of |p|. For the cases in Figure 2 with XA/K, >2,
the maximal relative median bias of LIML is 10% for K, >2 and is 1% for
K, > 8. Anderson (1982), Hillier (1990) and others have noted the relative lack
of bias of LIML in the fixed instrument/Gaussian model; the results here
extend their conclusions to more general conditions on the instruments and
errors and to a more comprehensive set of cases.

B. TSLS and LIML Confidence Interval Coverage Rates

Coverage rates for conventional 95% TSLS and LIML confidence intervals
are plotted in Figure 3 for the same parameter values as in Figure 2. The TSLS
coverage rate is quite sensitive to K, and |pl| and generally falls as K,
increases, A'A/K, decreases, and |p| increases. For example, when |p|= 2,
coverage rates are near 95% for all K, once XA/K, is greater than 10, but
when | p| = .99, coverage rates exceed 90% only if both XA/K, is large and K,
is small. Thus TSLS confidence intervals can fail dramatically for moderate and,
depending on K, and p, large XA/K,. In contrast, coverage rates for LIML
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confidence intervals are less sensitive to K, and | p| and in an absolute sense
they can be considered fairly good, as long as XA/K,>1: for 1 <K, <100,
NA/K,>1, and | p| = .2, .5, and .99, the asymptotic coverage rates lie between
81.6% and 99.8%. For XA/K, = 10, the asymptotic coverage rates lic between
91.6% and 98.1%.°

C. Size of Tests of QOveridentifying Restrictions

The asymptotic size (the rejection rate under the null of instrument exogene-
ity) of the 5% Basmann test of the overidentifying restrictions based on TSLS
(g, (1) in (3.8b)) were computed using the representations in Theorem 3; to
save space, no figures or tables are provided but the findings are summarized.
Rejection rates under the null are generally close to 5% for | p| small, but for
large | pl| and large K, the size distortions can be dramatic. For example, with
K, =100 and XA/K, =1, the rejection rate is 47%A when | p|=.75 and is 97%
when | p| =.99. The 5% test based on LIML, ¢y, (k). has much better size
than its TSLS counterpart. Over the parameter values |pl=(2,.5,.75,.99),
0 < NA/K, <20,2 <K, <100, the size is between .001 and .052; if 1 < XA/K, <
20, the size is between .012 and .052. Thus the Basmann TSLS overrejections
under the null are essentially absent for its LIML counterpart, although
G pas(kyng) s asymptotically conservative for A’A/K, small and K, small. This
suggests using ¢g, (k1 ) in practice.

D. Power of AR and Bonferroni Tests

One way to compare the accuracy of the AR and Bonferroni confidence
regions is to compare the asymptotic power of AR and Bonferroni tests of the
hypothesis 8= B, against the alternative 8= 8, + (q,,/3,,)"/* A. When K, =
1, because the Bonferroni tests are conservative the AR test is uniformly (in A)
more powerful for all p and XYA/K,. When K, > 1, no test dominates the other
so the asymptotic power of the three tests were compared numerically and are
briefly summarized. When K, and/or XA/K, is large, AR has the lowest power
against most alternatives and LIML Bonferroni tends to be more powerful than
TSLS Bonferroni, particularly for large | p| and when K, is large and XA/K, is
small. When both K, and XA/K, are small, AR is more powerful than either
Bonferroni test. This suggests using the LIML Bonferroni confidence regions if
K, is large and/or XA/K, is suspected to be large, and using the AR regions
otherwise.

® These results accord with Morimune’s (1989, Sec. 3) Monte Carlo finding of greater size
distortions for trg; g than fpy in selected models in the fixed instrument/Gaussian case. In
Morimune’s (1989) designs, K, <11, XA/K, > 2.6, and p < .9, so Morimune’s results understate the
distortions found here for more instruments and smaller XA/K,.
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INSTRUMENTAL VARIABLES REGRESSION 579

7. APPLICATIONS TO THE RETURNS TO EDUCATION

This section reexamines Angrist and Krueger’s (1991) estimates of the returns
to education in light of the foregoing results. Angrist and Krueger’s insight was
that quarter of birth, and quarter of birth interacted with other covariates, can
serve as instruments for education in an earnings equation: quarter of birth is
arguably randomly distributed across the population, yet it affects educational
attainment through a combination of the age at which a person begins school
and the compulsory schooling laws in a person’s state. However, in many cases
their first stage F statistics are low, raising the possibility that inference based
on standard asymptotics might be unreliable here. We use Angrist and Krueger’s
(1991) data, which is drawn from the 5% Public Use Micro Sample of the 1980
U.S. Census."” The sample includes men born between 1930 and 1949 with
positive earnings in 1979 and no missing data on any of the relevant variables.
As in Angrist and Krueger, the sample is split into two ten year birth cohorts.

Table II summarizes the results of regressions of log weekly earnings onto
years of education and additional control variables (listed at the bottom of the
table). The top panel contains results for men born in 1930-39, and the bottom
panel contains results for the 1940-49 cohort. The first rows of each panel
contain the estimated return to education, that is, the coefficient on years of
education, estimated by OLS, TSLS, and LIML in four basic specifications.
Subsequent rows report 95% Bonferroni and AR confidence intervals for the
returns to education, the first stage F statistic, the Durbin endogeneity test
statistic (Fpyy ), and Basmann’s over-identification test statistic based on the
LIML estimator (g, (k ). The regression specifications are taken from
Angrist and Krueger (1991, Tables 5-7) and Bound, Jaeger, and Baker (1995,
Tables 1 and 2). Three quarter-of-birth dummies are used as instruments in
column I. Columns IT and III add quarter-of-birth X year-of-birth interactions to
the instrument list, for a total of 30 instruments in column II and 28 instruments
in column III (due to the inclusion of age and age?). Column IV adds quarter-
of-birth X state-of-birth interactions to the instrument list for a total of 178
instruments.

The asymptotic theory helps to interpret these empirical results. In order to
apply some of the asymptotic results, a-priori reasoning is used to obtain a range
in which p might plausibly fall. To do this we posit that the return to education
lies between 0 and .18. In specification I of Table II, BOLS =.063 and
(2,,/3,)"%=5.05; using (4.3), this'yields —.51 < p( B,) < .30. Because cover-
age rates decrease and bias increases as | p| increases, it therefore suffices to
consider | p|=.5. (The other specifications in Table II yield similar ranges for

p.)

1 For details of construction, see Appendix 1 of Angrist and Krueger (1991). We thank David
Jaeger for providing these data.
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TABLE II
ESTIMATED EFFECTS OF YEARS OF EDUCATION ON LOG WEEKLY EARNINGS IN THE 1980 CENsUS

1 I I v

A. Men Born 1930-39 (n = 329, 509)
OLS 0632 0632 0632 0628
(S.E) (.0003) (.0003) (.0003) (.0003)
TSLS .0990 .0806 .0600 .0811
(S.E) (.0207) (.0164) (.0290) (.0109)
LIML .0999 .0838 .0574 .0982
(S.E) (.0210) (.0179) (.0385) (.0153)
A-R Confidence [.052,.153] [-.003,.179] [—.441,.490] [—.015,.240]
Interval
TSLS Bonferroni [.052,.152] [.038,.137] [—, + ] [.048,.172]
Confidence Interval
LIML Bonferroni [.052,.153] [.036,.134] [— o0, + ] [.043,.158]
Confidence Interval
F (first stage) 30.53 4.747 1.613 1.869
{p-value} {.000} {.000} {.021} {.000}
Durbin test, TSLS 3.087 1.126 0.013 2.853
{p-value} {0.079} {.289} {910} {091}
Basmann test, LIML 2.318 22.45 19.55 161.1
{p-value} {314} {.801} {.849} {.800}
B. Men Born 1940-49 (n = 486,926)
OLS .0520 0520 .0520 .0516
(S.E) (.0003) (.0003) (.0003) (.0003)
TSLS —-.0734 .0393 0779 .0666
(S.E) (.0273) (.0145) (.0239) (.0113)
LIML —-.0902 .0286 1243 .0878
(S.E) (.0301) (.0197) (.0420) (.0178)
A-R Confidence [@] @] [@] [.033,.148]
Interval
TSLS Bonferroni [-.155, —.018] [—.004,.076] [.000,.219] [.027,.150]
Confidence Interval
LIML Bonferroni [—.174, — .028] [-.023,.079] [-.009,.290] [.023,.156]
Confidence Interval
F (first stage) 26.32 6.849 2.736 1.929
{p-value} {.000} {.000} {.000} {.000}
Durbin test, TSLS 28.90 0.780 1.188 1.780
{p-value} {.000} {377} {.276} {.182}
Basmann test, LIML 9.356 93.29 49.22 200.36
{p-value} {.009} {.000} {.006} {.110}
Controls

Race, Standard yes yes yes yes

Metropolitan

Statistical Area,
Married, Region,
Year of Birth

Dummies

Age, Age? no no yes yes

State of Birth no no no yes
Instruments

Quarter of birth yes yes yes yes

Quarter of birth no yes yes yes

*(year of birth)

Quarter of birth no no no yes

*(state of birth)

# Instruments 3 30 28 178
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First consider the results for the 1930-39 cohort. In specification I the first
stage F statistic is large, implying that the expected bias of the TSLS estimator
is negligible. Inverting the first stage F statistic yields a 97.5% conference
interval for XA/K, of (17.3,45.8). Over this range of XA/K, with K, =3 and
| pl < < .5, the asymptotic theory suggests that standard TSLS and LIML statistics
are reliable. However, in specifications II-IV the first stage F statistic falls into
a range in which some of the TSLS and LIML results become unreliable. In
specification II the relative bias measure B,,, = .21, and the 97.5% confidence
interval for XA/K, is (2.26,5.64). Based on Figures 2 and 3, for N’A/K, > 2,
K, =30, and | p|<.5, LIML is approximately median unbiased but the TSLS
relative bias is as high as 33%; coverage rates for LIML and TSLS confidence
intervals may be as low as 90% and 60%, respectively. Also, Bonferroni
intervals, particularly LIML Bonferroni, are generally more accurate than AR
confidence intervals for K, large as discussed in Section 6D. For specification II,
this suggests focusing on the LIML estimates and either conventional or
Bonferroni LIML confidence intervals. In specification III the 97.5% interval for
XA/K, includes XA/K, =0, so none of the the TSLS or LIML estimates or
confidence intervals are reliable. Bonferroni and AR tests and the Durbin
endogeneity test have correct size for this specification but could have negligible
power. Finally, for specification IV the 97.5% confidence interval for XA/K, is
(0.53,1.32). Figures 2 and 3 do not go as high as K, =178, but for K, = 100,
NA/K, > .5, and |p|=.5, LIML remains approximately median unbiased but
TSLS relative bias is as high as 67%j; coverage rates for LIML and TSLS
confidence intervals could be as low as 77% and 1%; and Bonferroni confidence
intervals are generally tighter than AR confidence intervals. This suggests
focusing on the LIML point estimates and LIML Bonferroni confidence inter-
vals for specification IV.

For the 1940-49 cohort, rejection of the over-identifying restrictions using the
Basmann-LIML test suggests that the results from specifications I-III are
unreliable, particularly since the asymptotics imply that if anything this test is
undersized. Note that AR confidence intervals are empty for these specifications
as a result of rejecting the overidentifying restrictions. The Basmann test does
not reject in specification IV but the first stage F statistic is 1.9. Using reasoning
similar to that given for specification IV of the 1930-39 cohort, this suggests
focussing on the LIML point estimate and LIML Bonferroni confidence inter-
vals for this specification.

Using the estimators supported by the asymptotics, the point estimates are
reasonably stable across specifications and cohorts, ranging from .084 to .100.
The shortest AR interval is (.05,.15) in specification 1 (1930-39 cohort), and
Bonferroni intervals from specifications II (1930-39 cohort) and IV (both
cohorts) are similarly short. Among the TSLS and LIML confidence intervals
which we suspect to have at least 90% coverage rates, the tightest is (.05,.12) for
LIML in specification IT (1930-39 cohort). Importantly, the Durbin endogeneity
test rejects the hypothesis that OLS and TSLS estimands are the same at the
10% level in specifications I and IV for the 1930-39 cohort. Overall, this
analysis confirms the main conclusion of Angrist and Krueger that OLS esti-
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582 D. STAIGER AND J. H. STOCK

mates are if anything biased downward. However, our preferred estimates of the
returns to education are higher than theirs, implying roughly twice as much
downward bias in OLS estimates, and our preferred confidence intervals are
much wider than the unreliable TSLS intervals.

8. CONCLUSIONS AND LESSONS FOR EMPIRICAL PRACTICE

When the instruments are weakly correlated with the endogenous regressors,
conventional asymptotic results fail even if the sample size is large. In particular,
TSLS can be badly biased and can produce confidence intervals with severely
distorted coverage rates even if A'A/K, is moderate or, if K, is large, if XA/K,
is large. More generally, Figures 2 and 3 summarize the circumstances in which
TSLS and LIML will be unbiased and will form reliable confidence intervals.
Using conventional asymptotics after pretesting for instrument significance is an
unsatisfactory solution because the pretest will have power against small values
of XA/K,, for which TSLS and LIML statistics can be ill behaved. For example,
if XA/K,=3 and K, =10, the power of a 5% pretest using the first stage F
statistic exceeds 99%, but the TSLS bias is fully one-fourth the OLS bias.

The results have some constructive implications for empirical practice. At a
minimum, first stage F statistics (or, when n > 1, G, and/or the bias measures
in Section 3b) should be reported. Although some forms of the DWH test are
conservative, the Durbin form (Fpy,y ;) was found to have correct asymptotic
size and to have power against differences between the TSLS and OLS esti-
mands, even for small XA/K,, recommending its use. While tests of overidenti-
fying restrictions have size distortions, under the null the TSLS version of the
Basmann test tends to overreject while the LIML version tends to underreject.
This suggests relying on the Basmann-LIML test but recognizing that, for some
parameter values, it will have low power against small violations of instrument
orthogonality.

When n = 1, these results have two additional constructive implications. First,
estimator bias is less of a problem for LIML than TSLS, particularly when
XA/K, > 2, which suggests using LIML rather than TSLS point estimates.
Second, given the difficulties with conventional IV confidence intervals, these
results strongly suggest using nonstandard methods for interval estimation. Of
the asymptotically valid methods analyzed here, none is uniformly more accu-
rate than the others: LIML Bonferroni tests tend to have greatest power for
large AA/K, and/or large K,, but AR tests are relatively more powerful for
AA/K, and K, both small. In the empirical application to the returns to
education, both procedures produce plausible and comparable confidence inter-
vals in the cases in which the overidentifying restrictions were not rejected, even
when the first stage F statistic is quite small (less than two).

John F. Kennedy School of Government, Harvard University, 79 John F. Kennedy
St., Cambridge, MA 02138, U.S.A.

Manuscript received October, 1993; final revision received May, 1996.
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APPENDIX

Before proving the theorems we state a lemma which collects various results about sample
moments. The proof makes repeated use of Assumptions L;; and M and is omitted. Adopt the
notational conventions, B = B'/¥B'/? and B~! =B~1/2B~'/% where B is a nonsingular symmetric
matrix, and let Pl/? = (W'W)~1/¥W’ for general a X b matrix W with a > b.

LEMMA Al: Suppose that (2.1), (2.2), and Assumptions L;; and M hold. Then the following hold
Jointly:

@ Wut /T, Y Y ut JTY VY /T D (0 S S,

P
b) ZY'Z+ /T > Q, where 0=0,; — 07,503+ 0xz.
(©) (Py2u* , PY2V *) = 2,00/, 2, 32 ), where (2, vec(zy,Y) is distributed N(0, 3 ® I.).

uuu >
(d) PY2Y*=(A+2,)3Y2.
(e (Yl/PZLuJ‘,Yl’PZLYJ‘,ul’PZ¢ul)=>(2‘l/V'V20'ulu/2,21/2 32 04,2,2,).

PROOF OF THEOREM 1: (a) Define x, = T(k — 1) and write B(k) — By = L (k7)™ 'Ny(ky), where
L&)=Y+ [I-1+x/TIM;.1Y* and Np(k)=Y *'[I = (1 + k/T)M, :]Ju* . Using Lemma Al
(a) and (¢), L; and Ny can be shown to have the limits {L;(x), Np(«)} = {SYF (v, — k) SY2,
g/ ZUF (A +2,)z, — k3y,), where the convergence is uniform in « over compact sets. By
assumption the convergence of the moments in Lemma Al, and thus the convergence of
{L (), Np(x)), is joint with k; = k. Recall that p=3}/*3y,0,,'/%, so after some algebra one
has B(k) — By = a,\/%5; [/2(1/1 —«l)” (v2 - Kp) 01/22V,/2A*(K) B (k).

(b) Note that u(k) yt-vY+ B(k) ut =Y+ (Bk) - By), so by Lemma Al and part (a),
Uuu(k):auu 22Vu (K)+B (K),EVVB (k)= UuuSI(AO(K))

(0) Using Rp(k) —r=R( B(k) — By), the definition of L;(«), and the previous results, we have

W(k) = Bt (k) RIR S5 Yoy — kL)~ Spl/ YR RBE()/1q0,S,( A5 GO,

The representation in the theorem follows using B3 (x) = 0.}/ 237 1/ %A% («).
(d) The result follows from the definition of ¢,(k) and calculations similar to those in part (c).
() Write £, =V'MzV/T K, —K,). The result follows from Assumption M and Lemma
Al(e). Q.E.D.

PROOF OF THEOREM 2: Note that for any nonsingular (n + 1) X (n + 1) matrix J, the roots of
¥’ MX? kY’ MZ?I 0 are the same as the roots of |J’ 7'M Y7 - kl'?’MZI_/J | =0. In particular
choose J, partmoned conformably with ¥, to be J;; =1, J,;=—8, J,=0, and J,,=1,. Let
D(k) =T'Y' My YT — (1 + k/T)J'Y'MzYJ. Now use Mz =My M, .My to rewrite Dy(«) as Dy(x)
=JY P, Y T— k'Y Y'M, .Y *J/T. Because y* =Y *B+ut, Y+JI=[u'Y'], by Lemma
Alle), 'Y +'P, . Y LT = T'E{T, where T diag(a,l/?, 3}4?) and 5 is defined in the statement
of the theorem. Also, J'Y +'M,.Y+J/T 2 5= 137, Thus Dp(x)= T'(5f — k3T uniformly
in k over compact sets. The solutions to [Dy(x)| = 0 therefore converge to those of | 5g* — k3| =

Thus Ry = Tk — 1D = «fme, where «fn. is the smallest root of |5 —
«3|=0. Q.E.D.

PROOF OF THEOREM 3: (a)(i) Use the definition of L, and Ny in Theorem 1 to write B(k) — B,
under L, as

B(Kk) — By =Ly (k) " Np(kp) + Lo(wp) Y Y (I = kp My D) Z 0.

The limits in Theorem 1 for L;(«x;) and Ny(kz) continue to apply under L,. Also, Y *+'(1 —
kKpMy)Z 0=Y Y Z 0= g/ VP (AN + 2,06 Thus (k) — By = BF(x) + 0'1/221/;/2(1/ -
kI) Nz + Neé= o)/ 237/ A (w).
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(i) Assumption L, implies i=u* +Z+ w—Y*(B(k) - B), so by Lemma Al and part (a)(i),
P20t = 0) 2z, + 0V — (A +2)) ZYPBF (k) = 0,2, + €= (A +2,) AF ()]

Thus &'Py .0 = ,,8,(4F (), £). Under Assumption L,,, similar calculations show that &'il/T =

[ut =Y LBk - Bu*t =Y L (Bk) - /T + 0,(1) = 0,,5,(4f(x)). Combining these results
P

we have ¢, (k)= S,(Af(x), £)/S,(Af (k). The result ¢, — g, — 0 (and consequently the

p
limiting distribution of ¢p,,) follows from &'M,.i4/(T—K; —K,)—#'t4/T — 0.
(b) The proof is a modification of the proof of Theorem 2. Under Assumption L,

PYRT LT = [PV2(u*t +Z* 0)PY2AY H )= [07,(z, + €)  (zp+ M IH2].
Thus J'Y 4P, Y +T=TE and J'Y*'M,. Y*I/T=7Y*+'Y+J/T+0,D. Under L,,
J'}_’l’f’ll/TiZ=T§T because, for example, w’Zl'PZile=T“la"(ZJ"Z*/T)d—p>0.

Thus D(x) in the proof of Theorem 2 has the limit, Dy(x) = T/(5* + «3)7 uniformly in « on
compact sets. The result follows using the arguments in the proof of Theorem 2. Q.E.D.

PROOF OF THEOREM 4: Note that 9(k) = (X'X)™'X'[y - YB(K)], so T'2(§(k) - y) =
T'xX'X) " UTV2X'u —(T~2X'Y) B(k) = By)). The result follows from calculations which
invoke Assumption L4 and Lemma Al. Q.ED.

PrROOF OF THEOREM 5: (a) Under the null 8= B, from the definition of 4, and Lemma Al,
Ar(By) =W ' Pyout /K) /[(wt'ut —ut'Pyaut)/(T-K, —K,)]
=2,2,/K; NXI%Z/KZ'
(b) When B=8;, y* —Y*By=ut -Y*+(B;— B;), so by Lemma Al,
(=Y LB) Pyt =Y LB = g lz, — (A +2,)A1 [z, — (A +2,) 4]
= 0,,5,(4,0).

Also, (y* =Y+ B))'(y* =Y+ B))/(T-K,-K;) 5 ,,5,(A). Substitution of these limits into the
definition of A(p,) yields the expression in the theorem. The fact that the distribution is
noncentral XI%; follows by some algebra after observing that the K,-vector z, — 2z, A is distributed
N(0, $;(A)), where S;(4) is nonrandom. Q.E.D.
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