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A CONDITIONAL LIKELIHOOD RATIO TEST
FOR STRUCTURAL MODELS

By Marcelo J. Moreira1

This paper develops a general method for constructing exactly similar tests based on
the conditional distribution of nonpivotal statistics in a simultaneous equations model with
normal errors and known reduced-form covariance matrix. These tests are shown to be
similar under weak-instrument asymptotics when the reduced-form covariance matrix is
estimated and the errors are non-normal. The conditional test based on the likelihood
ratio statistic is particularly simple and has good power properties. Like the score test, it
is optimal under the usual local-to-null asymptotics, but it has better power when identifi-
cation is weak.

Keywords: Instruments, similar tests, Wald test, score test, likelihood ratio test, con-
fidence regions, 2SLS estimator, LIML estimator.

1� introduction

When making inferences about coefficients of endogenous variables
in a structural equation, applied researchers often rely on asymptotic approxi-
mations. However, as emphasized in recent work by Nelson and Startz (1990),
Bound, Jaeger, and Baker (1995), and Staiger and Stock (1997), these approx-
imations are not satisfactory when instruments are weakly correlated with the
regressors. In particular, if identification can be arbitrarily weak, Dufour (1997)
shows that Wald-type confidence intervals cannot have correct coverage proba-
bility, while Wang and Zivot (1998) show that the standard likelihood ratio test
employing chi-square critical values does not have correct size. The problem
arises because inference is based on nonpivotal statistics whose exact distribu-
tions depart substantially from their asymptotic approximations when identifica-
tion is weak.
This paper develops a general procedure for constructing valid tests of struc-

tural coefficients based on the conditional distribution of nonpivotal statistics.
This procedure yields tests that are exactly similar when the reduced-form errors
are normally distributed with known variance. When this assumption is dropped,
simple modifications of these tests are shown to have limiting power under weak-
instrument asymptotics equal to the exact power when the errors are normal

1 Lengthy discussions with Thomas Rothenberg were extremely important for this work and I am
deeply indebted for all his help and support. This paper follows a suggestion by Peter Bickel. For
comments and advice, I also would like to thank Donald Andrews, Kenneth Chay, Michael Jansson,
James Powell, Paul Ruud, James Stock, a co-editor, and two anonymous referees. Finally, I would
like to thank the seminar participants at Berkeley, Brown, Chicago, EPGE/FGV, Harvard, Montreal,
Northwestern, Penn, Pittsburgh, Princeton, PUC-Rio, UCLA, UCSD, and Yale.
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with known variance. In particular, these modified tests are asymptotically simi-
lar even when the structural parameters are unidentified.
The conditional approach is employed to find a critical value function for the

likelihood ratio statistic. This conditional likelihood ratio test has good power
properties overall. It behaves like the unconditional likelihood ratio test when
identification is strong and seems to dominate the test proposed by Anderson and
Rubin (1949) and a particular score test. This score-type test was first proposed
by Breusch and Pagan (1980) in a general framework, and has been used by
Kleibergen (2002) and Moreira (2001) in testing weakly-identified parameters;
see Moreira (2002) for a general exposition of the weak-instrument problem.
The conditional approach can also be used to construct valid confidence

regions. For example, coefficient values not rejected by the conditional 2SLS
Wald test form a confidence region centered around the 2SLS estimate, while
the values not rejected by the conditional likelihood ratio test form a confidence
region centered around the LIML estimate.2 These regions have correct coverage
probability even when instruments are weak and are informative when instru-
ments are good.
This paper is organized as follows. In Section 2, exact results are developed

under the assumption that the reduced-form disturbances are normally dis-
tributed with known covariance matrix. Section 3 focuses on the likelihood ratio
test. Section 4 extends the results for an unknown error distribution, although
at the cost of introducing some asymptotic approximations. Monte Carlo simu-
lations suggest that these approximations are quite accurate. Section 5 compares
the confidence region based on the conditional likelihood ratio test with the con-
fidence region based on a score test that is also approximately similar. Section 6
contains concluding remarks. All proofs are given in the appendices.

2� normal reduced-form error distribution
with known covariance matrix

2�1� The Model

Consider the structural equation

y1 = Y2�+X1�+u�(1)

where y1 is the n×1 vector of observations on an endogenous variable, Y2 is the
n×l matrix of observations on l explanatory endogenous variables, X1 is the n×r
matrix of observations on r exogenous variables, and u is an n× 1 unobserved
disturbance vector having mean zero. This equation is assumed to be part of a
larger linear simultaneous equations model in which Y2 may be correlated with
u. The complete system contains k additional exogenous variables (represented

2 For the Stata .ado file that computes the LIML estimator and constructs confidence regions based
on the conditional approach, see Moreira and Poi (2003).
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by the matrix X2) that can be used as instruments for conducting inference on
the structural coefficients �. More specifically, we have

Y2 =X2�+X1
�� +V2�

where we assume that k ≥ l and that the matrix �X1�X2� has full column rank
	k+ r
.
For any matrix Q having full column rank, let NQ = Q	Q′Q
−1Q′ and MQ =

I−NQ. It will be convenient to write the reduced form for Y = �y1�Y2� in terms
of the orthogonal pair �Z�X1� where Z=MX1

X2. Then the reduced-form system
can be written as

y1 = Z��+X1�+v1�(2)

Y2 = Z�+X1� +V2�

where � = �� + 	X ′
1X1


−1X ′
1X2� and �= ��+�. The restriction on the coeffi-

cients of Z in the reduced form are implied by the identifying assumption that
the instruments X2 do not appear in (1). In this section, we also assume that
the n rows of the n× 	l+1
 matrix of reduced-form errors V = �v1�V2� are i.i.d.
normally distributed with mean zero and known nonsingular covariance matrix
�= �
i� j �.
The goal here is to test the null hypothesis H0 � �= �0 against the alternative

H1 � � �= �0, treating ��� , and � as nuisance parameters. Commonly used tests
reject the null hypothesis when a test statistic � takes on a value greater than
a specified critical value c. The test is said to have level � if, when the null
hypothesis is true,

Prob	� > c
≤ �

for all admissible values of the nuisance parameters. Since the nuisance param-
eters are unknown, finding a test with correct size is nontrivial. Of course, if the
null distribution of � does not depend on the nuisance parameters, the 1−�
quantile of � can be used for c, making the null rejection probability equal �. In
that case, the test is said to be similar and � is said to be pivotal. If � has null
distribution dependent on nuisance parameters but can be bounded by a pivotal
statistic, then � is said to be boundedly pivotal.

Although structural coefficient tests based on pivotal statistics have been pro-
posed in the literature, the Wald and likelihood ratio statistics most commonly
employed in practice are nonpivotal. Under regularity conditions, both statis-
tics are asymptotically chi-square-l and tests using their 1−� quantile for c are
asymptotically similar with size �. However, when � is almost unidentified,3 the
actual null rejection probability can differ substantially from � since the asymp-
totic approximation can be very poor when the instruments are weakly correlated
with Y2.

3 The structural coefficients are unidentified when rank 	�
< l. The coefficients are almost uniden-
tified when � is in a small neighborhood around a matrix with rank less than l.
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One possible solution to the problem that results from using nonpivotal statis-
tics is to replace the asymptotic chi-square critical value with some larger, con-
servative value, that guarantees that the null rejection probability is no larger
than �. This is the approach taken by Wang and Zivot (1998) for the likelihood
ratio test and the Hessian-based score test. Unfortunately, when identification is
good, these tests have null rejection probabilities much lower than � and reduce
power unnecessarily. Moreover, this approach is fruitless for statistics that are
not boundedly pivotal. Here we will develop an alternative procedure that allows
us to construct tests that are exactly similar.

2�2� Similar Tests Based on Conditioning

When � is known and the errors are normal, the probability model for Y ,
given �Z�X1�, is a member of the curved exponential family, and the k× 	l+1

matrix �Z�X1�

′Y is a sufficient statistic for the unknown parameters. Hence, we
can restrict attention to tests that depend on Y only through Z′Y and X ′

1Y . The
nuisance parameters � and � can be eliminated by considering tests that depend
only on Z′Y . This restriction can be justified by requiring the test to be invariant
to transformations g	Y 
 = Y +X1F for arbitrary conformable matrices F . For
this group of linear transformations of X1, the maximal invariant in terms of the
sufficient statistic is exactly Z′Y . Lehmann (1986, Chapter 6) explains the use of
invariance in simplifying a hypothesis testing problem.
For any known nonsingular, nonrandom 	l+ 1
× 	l+ 1
 matrix D�Z′YD is

also an invariant sufficient statistic. A convenient choice is the matrix

D0 = �b0��
−1A0��

where b0 is the 	l+1
×1 vector �1�−�′
0�

′ and A0 is the 	l+1
× l matrix ��0� Il�
′.

Note that every column of A0 is orthogonal to b0. Then the invariant sufficient
statistic can be represented by the pair �S�T � where

S = Z′Yb0 = Z′	y1−Y2�0
 and T = Z′Y�−1A0�

The k-dimensional vector S is normally distributed with mean Z′Z�	�−�0

and covariance matrix Z′Zb′

0�b0. The k× l matrix T is independent of S, and
vec	T 
 is normally distributed with mean vec	Z′Z�A′�−1A0
 and covariance
matrix A′

0�
−1A0⊗Z′Z, where A= ��� Il�

′. Thus we have partitioned the invari-
ant sufficient statistic Z′Y into two independent, normally distributed statistics,
S having a null distribution not dependent on � and T having a null distribution
dependent on � . Indeed, when � is known to equal �0, T is a sufficient statis-
tic for � and is a one-to-one function of the constrained maximum likelihood
estimator �̂:

�̂ = 	Z′Z
−1T 	A′
0�

−1A0

−1�

Let �	S�T ����0
 be a statistic for testing the hypothesis that � = �0 (the
statistic may also depend on Z, but that dependency will be ignored in this
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section). If the null distribution of � depends on � , a test that rejects H0 when �
lies in some fixed region will not be similar. Nevertheless, following an approach
suggested by the analysis in Lehmann (1986, Chapter 4), it is easy to construct a
similar test based on �. Although the marginal distribution of � may depend on
� , the independence of S and T implies that the conditional null distribution
of � given that T takes on the value t does not depend on � . As long as this
distribution is continuous, its quantiles can be computed and used to construct a
similar test. Thus we have the following result:

Theorem 1: Suppose that �	S� t����0
 is a continuous random variable under
H0 for every t. Define c�	t����0��
 to be the 1−� quantile of the null distribution
of �	S� t����0
. Then, the test that rejects H0 if �	S�T ����0
 > c�	T ����0��

is similar at level � ∈ 	0�1
.

It is shown in Moreira (2001) that c�	T ����0��
 does not depend on T when
� is pivotal. Thus, the conditional approach for finding a similar test may be
thought of as replacing the nonpivotal statistic �	S�T ����0
 by the new statistic
�	S�T ����0
− c�	T ����0��
. Alternatively, since conditioning on T is the
same as conditioning on �̂ , this approach may be interpreted as adjusting the
critical value based on a preliminary estimate of � . Henceforth, c�	T ����0��

will be referred to as the critical value function for the test statistic �.
To illustrate the conditional approach, we now consider a number of examples.

Example 1: Anderson and Rubin (1949) propose testing the null hypothesis
using the statistic S. Since S has zero mean and variance proportional to Z′Z
when �= �0, it is natural to reject the null hypothesis when S ′	Z′Z
−1S is large.
The Anderson-Rubin statistic for known � is

AR0 = S ′	Z′Z
−1S/�2
0 �

where �2
0 = b′

0�b0, is the variance of each element of u0 ≡ y1−y2�0. This statistic
is distributed chi-square-k under the null hypothesis and it is consequently piv-
otal. Its conditional distribution given T = t does not depend on t and its critical
value function collapses to a constant

cAR	t����0��
= q�	k
�

where q�	df 
 is the 1−� quantile of a chi-square distribution with df degrees
of freedom. Moreira (2001) shows that the Anderson-Rubin test is optimal when
the model is just-identified. However, this test has poor power properties when
the model is over-identified, since the number of degrees of freedom is larger
than the number of parameters being tested.

Example 2: Consider a particular score statistic

LM0 = S ′�̂
[
�̂ ′Z′Z�̂

]−1
�̂ ′S/�2

0 �
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Breusch and Pagan (1980) propose a score-type statistic in a general framework
(including nonlinear models) that reduces to LM0 in our model. Kleibergen
(2002) and Moreira (2001) show that �̂ is independent of S and, consequently,
the null distribution of LM0 is chi-square-l. A Lagrange multiplier test that
rejects H0 for large values of LM0 has correct null rejection probability as long
as the appropriate critical value is used. Again, the score test statistic is pivotal
and its critical value function collapses to a constant

cLM	t����0��
= q�	l
�

Like the Wald and likelihood ratio tests, this score test is (locally) asymptotically
optimal when the structural parameters are identified.

Example 3: The Wald statistic centered around the 2SLS estimator is given
by

W0 = 	b2SLS−�0

′Y ′

2NZY2	b2SLS−�0
/�̂
2�

where b2SLS = 	Y ′
2NZY2


−1Y ′
2NZy1 and �̂2 = �1�−b′

2SLS���1�−b2SLS�
′. Here, the

nonstandard structural error variance estimate exploits the fact that � is known.
In Appendix B, the critical value function for W0 is shown to simplify:

cW 	T ����0��
= c̄W 	�����0��
�

where � ≡ 	A′
0�

−1A0

−1/2t′	Z′Z
−1t	A′

0�
−1A0


−1/2.

Example 4: The likelihood ratio statistic, for known �, is defined as

LR0 = 2
[
max
���

L	Y ������
−max
�

L	Y ��0����

]
�

where L is the log likelihood function after concentrating out � and � . Various
authors have noticed that, in curved exponential models, the likelihood ratio test
performs well for a wide range of alternatives; see, for example, Van Garderen
(2000). In Appendix B we show that the critical value function for the likelihood
ratio test has the form

cLR	T ����0��
= c̄LR	���
�

that is, it is independent of � and �0.

To implement the conditional test based on a nonpivotal statistic �, we need
to compute the conditional quantile c�	t����0��
. Although in principle the
entire critical value function can be derived from the known null distribution of
S, for most choices of � a simple analytical expression seems out of reach. A
Monte Carlo simulation of the null distribution of S is much simpler. Indeed,
the applied researcher need only do a simulation for the actual k× l matrix t
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observed in the sample and for the particular �0 being tested; there is no need
to derive the whole critical value function c�	t����0��
.

The critical value function for a given test statistic � will generally depend on
the k× l matrix t. However, as noted above, the critical value functions for the
Wald and likelihood ratio statistics depend on t only through the l× l matrix � .
This can be a considerable simplification when k− l is large. In particular, when
there is only one endogenous variable on the right-hand side of (1), � reduces
to a scalar. See Appendix B for a more thorough exposition on how to compute
c̄�	�����0��
.

3� the conditional likelihood ratio test

We can now elaborate more detailed expressions for the conditional likelihood
ratio test. In Appendix A we show that, when � is known, the likelihood ratio
statistic is given by

LR0 =
b′
0Y

′NZYb0
b′
0�b0

−min
b

b′Y ′NZYb

b′�b

= b′
0Y

′NZYb0
b′
0�b0

− �̄min�

where b is the 	l+ 1
× 1 vector �1�−�′�′ and �̄min is the smallest eigenvalue of
�−1/2Y ′NZY�−1/2. This expression can be simplified somewhat when written in
terms of the standardized statistics

�S = 	Z′Z
−1/2S	b′
0�b0


−1/2 and �T = 	Z′Z
−1/2T 	A′
0�

−1A0

−1/2�

Under the null hypothesis, �S has mean zero so �S ′�S has chi-square distribution
with k degrees of freedom. The statistic �T ′ �T is distributed as noncentral Wishart
with noncentrality related to � ′Z′Z�; it can be viewed as a natural statistic for
testing the hypothesis that � = 0 under the assumption that � = �0. Then, we
find

LR0 = �S ′�S− �̄min�

where �̄min is also the smallest eigenvalue of 	�S��T 
′	�S��T 
.
A further simplification is possible when l = 1. In this case, � is a scalar, the

k× l matrix � reduces to a k-dimensional vector �, and the matrix A0 simplifies
to the vector a0 = ��0�1�′. In Appendix C, the likelihood ratio statistic is shown
to be given by

LR0 =
1
2

[
�S ′�S−�T ′ �T +

√
��S ′�S+�T ′ �T �2−4��S ′�S · �T ′ �T − 	�S ′ �T 
2�

]
�(3)

When k = 1��S and �T are scalars, and the LR0 statistic collapses to the piv-
otal Anderson-Rubin statistic �S ′�S. In the overidentified case, the LR0 statistic
depends also on �T and is no longer pivotal.
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Even in the special case l = 1, an analytic expression of the critical value
function for the LR0 statistic is not available. However, some general properties
of the function are known.

Proposition 1: When l= 1, the critical value function for the conditional LR0
test is a decreasing function of the scalar � = t̄′ t̄, satisfying

c̄LR	����k
→ q�	1
 as � →
�

c̄LR	����k
→ q�	k
 as � → 0�

Table I presents the critical value function calculated from 10,000 Monte Carlo
replications for the significance level of 5%. When k = 1, the true critical value
function is a constant equal to 3.84. The slight variation in the first column of
Table I is due to simulation error. For each k, the critical value function has
approximately an exponential shape. For example, when k = 4� c̄LR	��0�05�4
 is
well approximated by the function 3�84+5�65 ·exp	−�/7
. When the vector � is
far from the origin (and hence identification is strong), � tends to take on a large
value, and the conditional likelihood ratio test behaves like the unconditional
likelihood ratio test. When � is near the origin (and hence identification is weak),
� tends to take on a small value and the appropriate critical value is larger.
The conditional method connects and builds on previous work. First, the shape

of the critical value function indicates why the method proposed by Wang and
Zivot (1998) leads to a test with low power. Their critical value based on the
1−� chi-square-k quantile is the upper bound for the true critical value func-
tion c̄LR	����k
. Second, this critical value function can be seen as a refinement
of the method proposed by Zivot, Startz, and Nelson (1998) that selects for the
critical value either q�	k
 or q�	1
 depending on a preliminary test of the hypoth-
esis � = 0. The conditional approach has the advantage that it is not ad hoc and
the final test has correct null rejection probability without unnecessarily wasting

TABLE I
Critical Value Function of the Likelihood Ratio Test

k

� 1 2 3 4 5 10 20 50

0 3.96 5.88 7.79 9.45 11�19 18�26 31�23 67�42
1 3.80 5.64 7.13 8.67 10�25 17�39 30�72 66�18
5 3.85 4.48 5.45 6.49 7�54 13�90 26�74 62�35

10 3.83 4.27 4.64 5.09 5�79 10�37 21�87 58�35
20 3.88 3.97 4.21 4.38 4�74 6�41 14�07 47�98
50 3.85 3.91 4.01 4.20 4�10 4�73 6�15 21�44
75 3.73 3.85 4.02 3.88 4�04 4�36 5�11 10�13

100 3.86 3.74 3.79 3.93 4�06 4�22 4�76 7�36
50000 3.88 3.90 3.92 3.71 3�88 3�74 3�84 3�88
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Figure 1.—Critical value function for k = 4.

power. Figure 1 illustrates each method, sketching its respective critical values4

for different values of � when there are four instruments.

4� unknown reduced-form error distribution

In practice, of course, the reduced-form covariance matrix is unknown. Further-
more, there is no compelling reason to believe that the errors are exactly normally
distributed. However, since � can be well estimated even when identification is
weak, it is plausible to replace � by a consistent estimator in the tests devel-
oped in Section 2. A natural choice is the unrestricted least squares estimator
�̂ = Y ′MXY/	n−k
. Considering that standardized sums of independent ran-
dom variables should be approximately normal, the modified tests are expected
to behave well in moderately sized samples even with non-normal errors. Thus,
for a statistic �, one might reject the null hypothesis that �= �0 when

�
(
S� T̂ � �̂��0

)
> c�

(
T̂ � �̂��0��

)
�

where T̂ = Z′Y�̂−1A0. The critical value function could again be obtained by
the appropriate quantile of � from a simulation where the randomness of �̂ is
ignored and S is drawn from a normal distribution with mean zero and covariance
matrix Z′Zb′

0�̂b0.

4 The pre-testing procedure proposed by Zivot, Startz, and Nelson (1998) is based on the OLS
estimator for �. Instead, Figure 1 sketches the critical value function by using a pre-testing based on
the constrained maximum likelihood estimator for �.
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For example, replacing� by �̂ in the score statistic in Example 2, we obtain the
LM test, which is the score test used by Kleibergen (2002) and Moreira (2001).
Analogously, we can substitute � for �̂ in the likelihood ratio statistic LR0:

LR1 =
b′
0Y

′NZYb0

b′
0�̂b0

− �̂min�

where �̂min is the smallest eigenvalue of �̂−1/2Y ′NZY�̂−1/2. Alternatively, we can
use the actual likelihood ratio statistic for the normal distribution with unknown
variance,

LR= n

2
ln
(
1+ b′

0Y
′NZYb0

b′
0Y

′MXYb0

)
− n

2
ln
(
1+ �̂min

n−k

)
�

Simulations suggest that, even for relatively small samples, the LR1 and LR
statistics are close to the LR0 statistic. Therefore, the critical values in Table I
can be used for the conditional LR1 and LR tests (respectively, LR∗

1 and LR∗)
by replacing � by

�̂ = (
A′

0�̂
−1A0

)−1/2
t̂′	Z′Z
−1t̂	A′

0�̂
−1A0


−1/2�

In the next section we show that this substitution can be justified asymptotically
even when identification is weak and when the assumptions of normal errors and
exogenous instruments are relaxed.

4�1� Weak-Instrument Asymptotics

To examine the approximate properties of test statistics and estimators in mod-
els where identification is weak, Staiger and Stock (1997) consider the “weak-
instrument” asymptotics. In these nonconventional asymptotics, the matrix �
converges to the zero matrix as the sample size n increases. Using this approach,
we find that, under some regularity conditions, the limiting rejection probabili-
ties of our conditional tests based on an estimated � equal the exact rejection
probabilities when the errors are normal with known variance. This implies that
our tests are asymptotically similar no matter how weak the instruments.

Theorem 2: Consider the simultaneous equations model in Section 2. Suppose:
(i) Z′Z/n

p→ Q where Q is positive definite and Z′V/
√
n

d→ �zv where
vec	�zv
∼N	0��⊗Q
.

(ii) � = C/
√
n, where C is a fixed l×k matrix.

(iii) �̄ is continuous function that satisfies the homogeneity condition

�̄
(
S� T̂ �Z′Z��̂��0

)= �̄
(
n−1/2S�n−1/2T̂ � n−1Z′Z��̂��0

)
�

(iv) The critical value function c�̄ derived under the assumption of normality and
known � is continuous.
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Then the conditional test based on the statistic �̄	S� T̂ �Z′Z��̂��0
 has limiting
rejection probability equal to the exact rejection probability derived under the assump-
tion of normal reduced-form disturbances with known variance.

Assumption (i) is similar to that made in the standard asymptotic theory for
instrumental variable estimation. If Z is nonrandom with bounded elements and
the errors are i.i.d. with finite second moment, the first part of assumption (i)
implies the second part. Theorem 2 also allows for the case of lagged endogenous
variables as long as we adapt the convergence rates. Endogenous variables that
contain unit roots are already ruled out because of the normality of the limiting
distribution of Z′V/

√
n. Of course, approximations based on (i) can be poor in

small samples if the error distribution has very thick tails. Assumption (ii) states
that the coefficients on the instruments are in the neighborhood of zero. Note
that C is allowed to be the zero matrix so that Theorem 2 holds even when the
structural parameter is not identified. Assumptions (iii) and (iv) appear to be
satisfied for all the commonly proposed test statistics, including the Anderson-
Rubin score, conditional likelihood ratio, and conditional Wald tests.
Theorem 2 asserts that the conditional likelihood ratio test is similar under the

weak instrument asymptotics. When identification is not weak, the usual asymp-
totic arguments can be applied to show that our conditional likelihood ratio
test is asymptotically similar when l = 1. In this case, Engle (1984) shows that
the likelihood ratio statistic is asymptotically chi-square-one and Proposition 1
asserts that the critical value function converges to the usual asymptotic chi-
square-one critical value. Furthermore, we can expect the null rejection proba-
bility of the conditional likelihood ratio test to converge uniformly under some
regularity conditions.5 Following Andrews (1986, p. 267), we can guarantee uni-
form convergence if, under the null hypothesis, the finite-sample power func-
tions ��n	���
�n ≥ 1� are equicontinuous over the compact set K = P×��� in
which 	���
 takes values. Here, the set P can include the nonidentification case
	� = 0
 and ��� is a set of invertible 2×2 matrices. For a more thorough exposi-
tion of equicontinuity and uniform convergence, see Parzen (1954).

4�2� Power Comparison

To assess the performance of the conditional approach, we examine the perfor-
mance of the four tests described in Section 2: the conditional likelihood ratio test
(denoted as LR∗), the conditional Wald test based on the 2SLS estimator 	W ∗
,
the Anderson-Rubin test 	AR
, and the score test 	LM
. Using Theorem 2, the
asymptotic power for each test is computed following Design I of Staiger and
Stock (1997). In this design, l = 1 and r = 0 so the structural equation has only
one explanatory variable. The hypothesized value �0 for its coefficient is taken to

5 Rothenberg (1984) and Horowitz and Savin (2000) discuss the problem of size distortions due to
asymptotic approximations.
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be zero. The elements of the matrix Z are drawn as independent standard nor-
mal random variables and then held fixed. Two different values of the � vector
are used so that �′�/k = � ′Z′Z� 	
22k
, the “population” first-stage F -statistic
(in the notation of Staiger and Stock), takes the values 1 (weak instruments)
and 10 (good instruments). The rows of 	u�v2
 are i.i.d. normal random vectors
with unit variances and correlation �. Here, we report only results for �= 0�50,
although we have considered different degrees of endogeneity of y2.
Figures 2 and 3 graph the rejection probabilities of these four tests as func-

tions of the true value �, respectively, for k = 4 and k = 10.6 In each figure, all
four power curves are at approximately the 5% level when � equals �0. This
reflects the fact that each test is similar under the weak-instrument asymptotics.
As expected, the asymptotic power curves become steeper as the quality of instru-
ments improves.
The AR test has poor power when the number of instruments is large.

Although the LM�W ∗, and LR∗ tests are optimal under the local-to-null asymp-
totics, some of these tests do not have good power when instruments are weak.
The LM test has relatively low power both for the weak-instrument case and for
some values of � for the good-instrument case. The W ∗ test is biased, reflecting
the finite-sample bias of the 2SLS estimator. These poor power properties are
not shared by the conditional likelihood ratio test. The LR∗ test not only seems
to dominate the Anderson-Rubin and score tests7 under the weak-instrument
asymptotics, but is optimal under the usual asymptotics.

4�3� Monte Carlo Simulations

Theorem 2 shows that, under some regularity assumptions, the conditional
approach leads to asymptotically similar tests even when the errors are nonnor-
mal and the reduced-form covariance matrix is estimated. In this section, we
present some evidence suggesting that the weak-instrument asymptotics work
quite well in moderately sized samples. To evaluate the actual rejection probabil-
ity under H0, 1,000 Monte Carlo simulations were performed based on Design I
of Staiger and Stock (1997) for 80 observations. Results are reported for � taking
the values 0.00, 0.50, and 0.99.
Table II presents null rejection probabilities for the following tests: Anderson-

Rubin 	AR
,8 the Hessian-based score test 	LMH
, the score test used by
Kleibergen (2002) and Moreira (2001) 	LM
, the likelihood ratio test 	LR
, the
conditional likelihood ratio test 	LR∗
, the Wald test centered around the 2SLS
estimator 	W
, and the conditional Wald test 	W ∗
. The critical value functions
for the conditional tests at 5% nominal level were based on 1,000 replications.

6 As � varies, 
11 and 
12 change to keep the structural error variance and the correlation between
u and v2 constant.

7 Other tests proposed in the literature such as the Wald test based on the LIML estimator and the
GMM0 test proposed by Wang and Zivot (1998) were also considered. However, their conditional
counterparts seem to have asymptotic power no larger than the conditional likelihood ratio test.

8 For the AR test, a �2	k
 critical value was used.
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Figure 2.—Asymptotic power of tests: 4 instruments.

Recall that the AR�LM�LR∗, and W ∗ tests are similar under the weak-
instrument asymptotics, whereas the LMH�LR, and W tests are not. Indeed,
Table II shows that the LMH test does not have null rejection probability close
to the 5% nominal level, whereas the LM test does. Likewise, the LR and W
tests perform more poorly than the conditional LR∗ and W ∗ tests. The null rejec-
tion probabilities of the LR test range from 0.048–0.220 and those of the W
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Figure 3.—Asymptotic power of tests: 10 instruments.

test range from 0.002–0.992. The null rejection probabilities of their conditional
counterparts range from 0.046–0.075 and 0.030–0.072, respectively.
Results for non-normal disturbances are analogous.9 Table III shows the null

rejection probabilities of some 5% tests when Staiger and Stock’s Design II

9 Once more, the critical value function is based on 1,000 Monte Carlo simulations as if the dis-
turbances were normally distributed with known variance �.
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TABLE II
Percent Rejected Under H0 at Nominal Level of 5%

Normal Disturbances

� �′�/k AR LMH LM LR LR∗ W W ∗

0.00 0�00 6.20 4�00 5.40 20�70 5.00 0�20 3.00
0.00 1�00 5.30 4�90 5.80 16�20 6.30 1�00 5.20
0.00 10�00 6.10 4�60 4.70 5�80 4.60 3�30 4.00
0.50 0�00 6.70 13�00 5.70 22�00 5.60 13�00 5.10
0.50 1�00 6.10 9�00 5.50 13�80 5.60 12�30 6.10
0.50 10�00 6.10 4�20 4.40 4�80 4.60 5�10 4.00
0.99 0�00 7.30 41�60 6.50 21�80 7.50 99�20 7.20
0.99 1�00 6.50 22�00 4.80 5�00 4.80 60�50 7.00
0.99 10�00 6.40 6�60 5.90 6�00 6.10 13�40 5.80

is used. The structural disturbances, u and v2, are serially uncorrelated with
ut = 	�2

1t −1
/
√
2 and v2t = 	�2

2t −1
/
√
2 where �1t and �2t are normal with unit

variance and correlation
√
�. The k instruments are indicator variables with an

equal number of observations in each cell. The rejection probabilities under H0
of the LR∗ and W ∗ tests are still close to 5% for all values of �′�/k and �.

Finally, Table IV compares the asymptotic power with the actual power of the
conditional LR∗ test when Staiger and Stock’s Design I with 80 observations is
used for the parameters �′�/k = 1�00 and �= 0�50. The difference between the
two power curves is small, which suggests that the weak-instrument asymptotics
work quite well. Similar results not reported here were obtained using other tests
and other designs.

5� confidence regions

Confidence regions for � with approximately correct coverage probability can
be constructed by inverting approximately similar tests. Although Dufour (1997),
building on work by Gleser and Hwang (1987), shows that Wald-type confidence

TABLE III
Percent Rejected Under H0 at Nominal Level of 5%

Non-Normal Disturbances

� �′�/k AR LMH LM LR LR∗ W W ∗

0.00 0�00 6.20 4�40 5.80 23�80 5.90 0�30 3.80
0.00 1�00 6.40 4�00 5.90 22�50 6.50 0�20 3.80
0.00 10�00 5.90 7�30 8.50 12�10 8.10 2�90 7.10
0.50 0�00 7.20 8�60 6.80 23�40 7.90 4�40 5.60
0.50 1�00 6.50 6�70 6.60 21�80 7.50 3�10 5.40
0.50 10�00 6.70 6�70 7.30 10�80 7.40 4�20 5.40
0.99 0�00 7.60 41�30 7.60 24�30 7.90 96�90 7.00
0.99 1�00 6.60 29�20 7.30 8�40 7.00 81�20 5.60
0.99 10�00 5.70 11�10 6.80 6�70 7.20 27�40 3.10
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TABLE IV
Percent Rejected at Nominal Level of 5%

Conditional Likelihood Ratio Test

Asymptotic Actual
� Power Power

−10�00 35�40 36�70
−8�00 33�30 35�20
−6�00 35�70 36�10
−4�00 37�40 36�80
−2�00 38�80 39�90
0�00 4�60 4�90
2�00 23�40 23�30
4�00 26�90 27�50
6�00 27�80 29�40
8�00 29�90 30�50

10�00 27�30 29�40

intervals are not valid when identification can be arbitrarily weak, the confidence
regions based on the conditional Wald test have correct coverage probability no
matter how weak the instruments are. Likewise, if the score or conditional like-
lihood ratio tests are used, the resulting confidence regions have approximately
correct levels. Moreover, the regions based on the conditional Wald test nec-
essarily contain the 2SLS estimator of �, while those based on the conditional
likelihood ratio or score tests are centered around the LIML estimator of �.
Therefore, confidence regions based on these tests can be used as evidence of the
accuracy of their respective estimators. For example, Cruz and Moreira (2002)
employ the conditional tests to reassess the accuracy of the estimates of returns
to schooling by Angrist and Krueger (1991).
To illustrate how informative the confidence regions based on the conditional

likelihood ratio test are when compared with those based on the score test,
Design I of Staiger and Stock (1997) is once more used. One sample is drawn in
which the true value of � is zero and �= 0�50. Figure 4 plots the likelihood ratio
and score statistics and their respective critical value functions at the significance
level of 5% against �0.10 The region in which each statistic is below its critical
value curve is the corresponding confidence set.
Figure 4 suggests that the LR∗ confidence regions are considerably smaller

than those of LM , as a result of the better power properties of the conditional
likelihood ratio test. When �′�/k= 1, the conditional likelihood ratio confidence
region is the set �−1�02�1�37�, while the score confidence region is the noncon-
vex set �−
�−6�72�∪ �−0�57�1�12�∪ �2�58�
�. When �′�/k= 10, the conditional
likelihood ratio confidence region is the set �−0�45�0�18� while the score confi-
dence region is the set �−0�45�−0�18�∪ �1�35�1�60�.

10 Here, we run 10,000 Monte Carlo replications to compute each point of the critical value
function.
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Figure 4.—Confidence regions.

In both cases, the score test fails to reject some nonlocal yet relevant alterna-
tives. As noted by Kleibergen (2002), the bad performance of the LM confidence
region can be partially explained by the fact that the score statistic equals zero
at two points, both satisfying the quadratic (in �0) expression:

a′
0�̂

−1Y ′NZYb0 = 0�
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6� conclusions

Previous authors, e.g. Anderson, Kunitomo, and Sawa (1982), have noted that
the simultaneous equations model with known reduced-form covariance matrix
has a simpler mathematical structure than the model with unknown covariance
matrix, but inference procedures for the two models behave very much alike
in moderately sized samples. Based on this fact, Moreira (2001) applies classi-
cal statistical theory to characterize the whole class of similar tests with normal
errors and known covariance matrix. Exploiting this finding, we develop a gen-
eral procedure for constructing valid tests of structural coefficients based on the
conditional distribution of nonpivotal statistics. Replacing the unknown covari-
ance matrix by a consistent estimator appears to have little effect on the null
rejection probability and on power.
Even with non-normal errors, the proposed conditional (pseudo) likelihood

ratio test has correct null rejection probability when identification is weak, and
good power when identification is strong. This test is equivalent to the usual
likelihood ratio test under the usual asymptotics. Moreover, power comparisons
using weak-instrument asymptotics suggest that this test dominates other asymp-
totically similar tests such as the Anderson-Rubin test and a particular score test.
Like the Anderson-Rubin and score approaches, the conditional tests pro-

posed here attain similarity under arbitrarily weak identifiability only when all the
unknown endogenous coefficients are tested. Inference on the coefficient of one
endogenous variable when the structural equation contains additional endoge-
nous explanatory variables is not allowed. Dufour (1997) shows how this limita-
tion can be overcome in the context of the Anderson-Rubin test, and the same
projection approach presumably could be applied here. However, this may entail
considerable loss of power.
Finally, the conditional approach used in this paper for finding similar tests

based on nonpivotal statistics can be applied to other statistical problems involv-
ing nuisance parameters. Improved inference should be possible whenever a
subset of the statistics employed to form a test statistic has a nuisance parameter-
free distribution and is independent of the remaining statistics under the null
hypothesis.

Department of Economics, Harvard University, Littauer Center M-6, 1875
Cambridge Street, Cambridge, MA 02138 USA; moreira@fas.harvard.edu;
http://post.economics.harvard.edu/marcelo/moreira.html
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APPENDIX A: Likelihood Ratio Derivation

Ignoring an additive constant and assuming normal errors, the log-likelihood function (after con-
centrating out � and � ) can be written as

L	Y ������
=−n

2
ln ���− 1

2
�tr	�−1V ′MX1

V 
��(A.1)
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where V = Y − Z�∗ − X1���� � and �∗ = �A′. Using Lagrange multipliers to maximize
L with respect to �∗ subject to the constraint that �∗b = 0, we find that �∗	���
 =
	Z′Z
−1Z′Y �I − b	b′�b
−1b′��. The concentrated log-likelihood function, Lc	Y ����
, defined as
L	Y ����	���
��
, is given by

Lc	Y ����
=−n

2
ln ���− 1

2

[
tr	�−1Y ′MXY
+ b′Y ′NZYb

b′�b

]
�

where X = 	X1�X2
. When evaluated at �̂, the maximum likelihood estimator of � when � is known,
this becomes

Lc	Y � �̂��
=−n

2
ln ���− 1

2
�tr	�−1Y ′MXY
+ �̄min��

where �̄min is the smallest eigenvalue of �−1/2Y ′NZY�−1/2. It follows that the likelihood ratio statistic
when � is known, LR0, is

LR0 = �S ′�S− �̄min�(A.2)

To find the likelihood ratio when � is unknown, we maximize (A.1) with respect to �, obtaining
�	���
= 	Y −Z�∗


′MX1
	Y −Z�∗
/n. Inserting this into (A.1) and dropping an additive constant,

we obtain

L∗	Y ������	���

=−n

2
ln �V ′MX1

V ��

Using standard facts about determinants, we find that the maximum value of the log-likelihood
function for a fixed � is given by

L∗
c	Y ��
=−n

2
ln
(
1+ b′Y ′NZYb

b′Y ′MXYb

)
− n

2
ln �Y ′MY ��

Moreover, the concentrated log-likelihood function evaluated at the maximum likelihood estimator
�LIML is then given by

L∗
c	Y ��LIML
=−n

2
ln
(
1+ �min

n−k

)
− n

2
ln �Y ′MXY ��

where �min is the smallest eigenvalue of 	Y ′MXY
−1/2Y ′NZY 	Y ′MXY
−1/2. Since the LR, the
likelihood-ratio statistic when � is unknown, is defined as 2�L∗

c	Y ��LIML
−L∗
c	Y ��0
�, it follows

that

LR= n ln
(
1+ b′

0Y
′NZYb0

b′
0Y

′MXYb0

)
−n ln

(
1+ �min

n−k

)
�

APPENDIX B: Critical Value Function

As in Section 3, we define the standardized statistics

�S = 	Z′Z
−1/2S	b′
0�b0


−1/2 and �T = 	Z′Z
−1/2T 	A′
0�

−1A0

−1/2�

Suppose that a statistic �̄	S�T �Z′Z����0
 is such that it depends on S and T only through �S ′�S��S ′ �T ,
and �T ′ �T . That is, for a suitable function � we have:

�̄	S�T �Z′Z����0
= �	�S ′�S��S ′ �T ��T ′ �T ����0
�
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Note that �S ′�S = �S ′M�T�S+�S ′ �T 	�T ′ �T 
−1�T ′�S. Thus, there exists a function �̄ such that

�̄	S�T �Z′Z����0
= �̄	�S ′M�T�S��S ′ �T ��T ′ �T ����0
�

Now, conditional on �T = t̄��T ′�S and �S ′M�T�S are independent with a N	0� �
 distribution and chi-
square distribution with k− l degrees of freedom under the null hypothesis. Therefore, for fixed k
and l, the critical value function for the �̄ statistic depends (at most) on �����0, and �. This feature
holds for all four statistics considered in Section 2.2. This reasoning can also be applied to compute
the critical value function c̄�	�����0��
 by Monte Carlo replications. We only have to simulate the
conditional null distribution of �̄ from the known null distribution of �T ′�S and �S ′M�T�S.

Finally, if � depends on � and �0 only through �S ′�S��S ′ �T , and �T ′ �T , then an analogous argument
shows that the critical value function for the �̄ statistic depends (at most) on � and � (for fixed k
and l). This property holds for the likelihood ratio statistic.

APPENDIX C: Proofs

Proof of Theorem 1: In fact, we need only assume that �	S�T ����0
 is a continuous random
variable for all t except for a set having T -probability zero. For any t where �	S�T ����0
 is not a
continuous random variable, define c�	t
 to be zero. Otherwise, let c�	t
 be the 1−� quantile of �.
Then, by definition, Pr��	S�T ����0
 > c�	T 
�T = t� = �. Since this holds for all t, it follows that
Pr��	S�T ����0
 > c�	T 
�= � unconditionally. Q.E.D.

Proof of Proposition 1: Note that 	�S��T 
= 	Z′Z
−1/2Z′Y�−1/2J where

J = [
�1/2b0	b

′
0�b0


−1/2��−1/2A0	A
′
0�A0


−1/2
]

is an orthogonal matrix. Thus the eigenvalues of �−1/2Y ′NZY�−1/2 are the same as the eigenvalues
of 	�S��T 
′	�S��T 
. This shows that the LR0 statistic indeed depends only on �S ′�S��S ′ �T , and �T ′ �T . When
l = 1, the smallest eigenvalue is then given by

�̄min = 1
2

[
�T ′ �T +�S ′�S−

√
	�T ′ �T +�S ′�S
2 −4��S ′�S · �T ′ �T − 	�S ′ �T 
2�

]
�

Therefore, the LR0 test statistic is given by expression (3). For �T ′ �T �= 0, LR0 can be rewritten as

LR0 =
1
2

[
Q1+Qk−1−�T ′ �T +

√
	Q1+Qk−1+�T ′ �T 
2 −4Qk−1 · �T ′ �T

]
�

where Q1 = �S ′ �T 	�T ′ �T 
−1�T ′�S and Qk−1 = �S ′�I − �T 	�T ′ �T 
−1�T ′��S. Conditional on �T = t̄�Q1 and Qk−1

are independent and under H0 have chi-square distributions with one and k−1 degrees of freedom,
respectively. Therefore, for fixed k and l, the critical value function for the LR0 statistic depends only
on � and �. This last argument suggests an easier way to do Monte Carlo simulations to compute the
critical value function for the LR0 statistic than the general method proposed in Appendix B. Here,
we have to do replications from variables (Q1 and Qk−1) whose null distributions do not depend on
� at all.

When � = 0�LR0 =�S ′�S, which is a chi-square-k random variable. When � →
�LR0 → 	�S ′ t̄
2/t̄′ t̄,
which is a chi-square-one random variable. Finally, we find that the critical value function c̄LR	����k

is a decreasing function of � . Our claim is that, for each 
, the derivative of LR0	Q1	

�Qk−1	

� �

with respect to � is negative. We will prove this claim by contradiction. Suppose that the derivative
is positive:

�LR0

��
=−1+ 	Q1+Qk−1+�T ′ �T 
−2 ·Qk−1[

	Q1+Qk−1+�
2 −4Qk−1 ·�
]1/2 > 0�(A.3)
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But (A.3) holds if, and only if,

	Q1+Qk−1+�T ′ �T 
−2 ·Qk−1 >

√
	Q1+Qk−1+�T ′ �T 
2 −4Qk−1 · �T ′ �T �

Taking square of both sides (and noting that the right-hand-side is larger than zero), we have

[
	Q1+Qk−1+�T ′ �T 
−2 ·Qk−1

]2
> 	Q1+Qk−1+�T ′ �T 
2 −4Qk−1 · �T ′ �T �

Simplifying this expression, we have

−4 ·Q1 ·Qk−1 > 0�

which is a contradiction. Thus, the null rejection probability is a decreasing function of � for a fixed
critical value c. Since the critical value function c̄LR	����k
 is such that the null rejection probability
equals � for each T = t, it must be a decreasing function of � . Q.E.D.

Proof of Theorem 2: By definition,

1√
n
�S�T �= 1√

n
Z′�Z�A′b0+Vb0�Z�A′�−1A0+V�−1A0�

= 1√
n
Z′Z��A′b0�A

′�−1A0�+
1√
n
Z′V �b0��

−1A0��

Under Assumption (i),

1√
n
Z′Z��A′b0A

′�−1A0�
p−→QC��−�0�A

′�−1A0��

using the fact that A′b0 = �−�0. Let �≡ Vb0 and �≡ V�−1A0. Then, we have

1√
n
Z′V �b0��

−1A0�
d−→ ��z���z���

where �z� ≡�zvb0 and �z� ≡�zv�
−1A0. In particular, �z� is independent of �z� since � is uncorre-

lated with �. The statistic T is a function of the unknown variance of the disturbances. However,

1√
n
	T̂ −T 
= 1√

n
Z′Y��̂−1−�−1�A0

p→ 0�

since Z′Y/
√
n converges in distribution and �̂−1 −�−1 p→ 0. Therefore, �̄ has the same limiting

distribution as

�̄	�z�+QC	�−�0
��z�+QCA′�−1A0�Q����0
�(B.1)

using Assumption (iii). Analogously, using Assumptions (iii) and (iv) the critical value function c�̄
converges in distribution to

c�̄	�z�+QCA′�−1A0�Q����0
�(B.2)

Consequently, �̄	S�T ����0
− c�̄	T ����0��
 converges in distribution to the difference in expres-
sions (B.1) and (B.2). Q.E.D.
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