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Using Heteroscedasticity to Identify and
Estimate Mismeasured and Endogenous
Regressor Models

Arthur LEWBEL
Department of Economics, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467
(lewbel@bc.edu)

This article proposes a new method of obtaining identification in mismeasured regressor models, triangular
systems, and simultaneous equation systems. The method may be used in applications where other sources
of identification, such as instrumental variables or repeated measurements, are not available. Associated
estimators take the form of two-stage least squares or generalized method of moments. Identification comes
from a heteroscedastic covariance restriction that is shown to be a feature of many models of endogeneity
or mismeasurement. Identification is also obtained for semiparametric partly linear models, and associated
estimators are provided. Set identification bounds are derived for cases where point-identifying assumptions
fail to hold. An empirical application estimating Engel curves is provided.

KEY WORDS: Endogeneity; Heteroscedastic errors; Identification; Measurement error; Partly linear
model; Simultaneous system.

1. INTRODUCTION

This article provides a new method of identifying structural
parameters in models with endogenous or mismeasured regres-
sors. The method may be used in applications where other
sources of identification, such as instrumental variables, re-
peated measurements, or validation studies, are not available.
The identification comes from having regressors uncorrelated
with the product of heteroscedastic errors, which is shown to
be a feature of many models in which error correlations are
due to an unobserved common factor, such as unobserved abil-
ity in returns to schooling models, or the measurement error in
mismeasured regressor models. Even when this main identify-
ing assumption does not hold, it is still possible to obtain set
identification, specifically bounds on the parameters of interest.

For the main model, estimators take the form of modified two-
stage least squares or generalized method of moments (GMM).
Identification of semiparametric partly linear triangular and si-
multaneous systems is also considered. In an empirical appli-
cation, this article’s methodology is applied to deal with mea-
surement error in total expenditures, resulting in Engel curve
estimates that are similar to those obtained using a more stan-
dard instrument. A literature review shows similarly satisfactory
empirical results obtained by other researchers using this arti-
cle’s methodology, based on earlier working article versions of
this article.

Let Y1 and Y2 be observed endogenous variables, let X be a
vector of observed exogenous regressors, and let ε = (ε1, ε2) be
unobserved errors. For now, consider structural models of the
form:

Y1 = X′β1 + Y2γ1 + ε1 (1)

Y2 = X′β2 + Y1γ2 + ε2. (2)

Later, the identification results will be extended to cases where
X′β1 and X′β2 are replaced by unknown functions of X.

This system of equations is triangular when γ2 = 0, other-
wise it is fully simultaneous (if it is known that γ1 = 0, then
renumber the equations to set γ2 = 0). The errors ε1 and ε2 may
be correlated with each other.

Assume E(εX) = 0, which is the standard minimal regres-
sion assumption for the exogenous regressors X. This permits
identification of the reduced form, but is of course not suf-
ficient to identify the structural model coefficients. Typically,
structural model identification is obtained by imposing equality
constraints on some coefficients, such as assuming that some
elements of β1 or β2 are zero, which is equivalent to assuming
the availability of instruments. This article instead obtains iden-
tification by restricting correlations of εε′ with X. The resulting
identification is based on higher moments and so is likely to pro-
vide less reliable estimates than identification based on standard
exclusion restrictions, but may be useful in applications where
traditional instruments are not available or could be used along
with traditional instruments to increase efficiency.

Restricting correlations of εε′ with X does not automatically
provide identification. In particular, the structural model param-
eters remain unidentified under the standard homoskedasticity
assumption that E(εε′ | X) is constant, and more generally, are
not identified when ε and X are independent.

However, what this article shows is that the model parameters
may be identified given some heteroscedasticity. In particular,
identification is obtained by assuming that cov(X, ε2

j ) �= 0 for
j = 2 in a triangular system (or for both j = 1 and j = 2 in a
fully simultaneous system) and assuming that cov(Z, ε1ε2) =
0 for an observed Z, where Z can be a subset of X. If
cov(Z, ε1ε2) �= 0, then set identification, specifically bounds on
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parameters, can still be obtained as long as this covariance is
not too large.

The remainder of this section provides examples of models
where these identifying assumptions hold and comparisons to
related results in the literature.

1.1 Independent Errors

For the simplest possible motivating example, let Equations
(1) and (2) hold. Suppose ε1 and ε2 have the standard model
error property of being mean zero and are conditionally in-
dependent of each other, so ε1 ⊥ ε2 | Z and E(ε1) = 0. It
would then follow immediately that the key identifying as-
sumption cov(Z, ε1ε2) = 0 holds, because then E(ε1ε2Z) =
E(ε1)E(ε2Z) = 0. This, along with ordinary heteroscedastic-
ity of the errors ε1 and ε2, then suffices for identification.

More generally, independence or uncorrelatedness of ε1 and
ε2 is not required, for example, it is shown below that the identi-
fying assumptions still hold if ε1 and ε2 are correlated with each
other through a factor structure, and they hold in a classical
measurement error framework.

1.2 Classical Measurement Error

Consider a standard linear regression model with a classically
mismeasured regressor. Suppose we do not have an outside in-
strument that correlates with the mismeasured regressor, which
is the usual method of identifying this model. It is shown here
that we can identify the coefficients in this model just based on
heteroscedasticity. The only nonstandard assumption that will
be needed for identification is the assumption that the errors in
a linear projection of the mismeasured regressor on the other
regressors be heteroscedastic, which is more plausible than ho-
moskedasticity in most applications.

The goal is estimation of the coefficients β1 and γ1 in

Y1 = X′β1 + Y ∗
2 γ1 + V1,

where the regression error V1 is mean zero and independent
of the covariates X, Y ∗

2 . However, the scalar regressor Y ∗
2 is

mismeasured, and we instead observe Y2, where

Y2 = Y ∗
2 + U , E(U ) = 0, U ⊥ X, Y1, Y

∗
2 .

Here, U is classical measurement error, so U is mean zero and
independent of the true model components X, Y ∗

2 , and V1, or
equivalently, independent of X, Y ∗

2 , and Y1. So far, all of these
assumptions are exactly those of the classical linear regression
mismeasured regressor model.

Define V2 as the residual from a linear projection of Y ∗
2 on X,

so by construction

Y ∗
2 = X′β2 + V2, E(XV2) = 0.

Substituting out the unobservable Y ∗
2 yields the familiar trian-

gular system associated with measurement error models

Y1 = X′β1 + Y2γ1 + ε1, ε1 = −γ1U + V1

Y2 = X′β2 + ε2, ε2 = U + V2

where the Y1 equation is the structural equation to be estimated,
the Y2 equation is the instrument equation, and ε1 and ε2 are
unobserved errors.

The standard way to obtain identification in this model is by
an exclusion restriction, that is, by assuming that one or more
elements of β1 equal zero and that the corresponding elements
of β2 are nonzero. The corresponding elements of X are then
instruments, and the model is estimated by linear two-stage least
squares, with Y2 = X′β2 + ε2 being the first-stage regression
and the second stage is the regression of Y1 on Ŷ2 and the subset
of X that has nonzero coefficients.

Assume now that we have no exclusion restriction and hence
no instrument, so there is no covariate that affects Y2 without
also affecting Y1. In that case, the structural model coefficients
cannot be identified in the usual way and so, for example, are not
identified when U, V1, and V2 are jointly normal and independent
of X.

However, in this mismeasured regressor model, there is no
reason to believe that V2, the error in the Y2 equation, would
be independent of X, because the Y2 equation (what would be
the first-stage regression in two-stage least squares) is just the
linear projection of Y2 on X, not a structural model motivated
by any economic theory.

The perhaps surprising result, which follows from Theorem
1 below, is that if V2 is heteroscedastic (and hence not indepen-
dent of X, as expected), then the structural model coefficients
in this model are identified and can be easily estimated. The
above assumptions yield a triangular model with E(Xε) = 0,
cov(X, ε2

2) �= 0, and cov(X, ε1ε2) = 0 and hence satisfy this ar-
ticle’s required conditions for identification.

The classical measurement error assumptions are used here
by way of illustration. They are much stronger than necessary to
apply this article’s methodology. For example, identification is
still possible when the measurement error U is correlated with
some of the elements X and the error independence assumptions
given above can be relaxed to restrictions on just a few low-order
moments.

1.3 Unobserved Single-Factor Models

A general class of models that satisfy this article’s assump-
tions are systems in which the correlation of errors across equa-
tions are due to the presence of an unobserved common factor
U, that is:

Y1 = X′β1 + Y2γ1 + ε1, ε1 = α1U + V1 (3)

Y2 = X′β2 + Y1γ2 + ε2, ε2 = α2U + V2, (4)

where U, V1, and V2 are unobserved variables that are uncorre-
lated with X and are conditionally uncorrelated with each other,
conditioning on X. Here, V1 and V2 are idiosyncratic errors in
the equations for Y1 and Y2, respectively, while U is an omitted
variable or other unobserved factor that may directly influence
both Y1 and Y2.

Examples:
Measurement Error: The mismeasured regressor model de-

scribed above yields Equation (3) with α1 = −γ1 and Equation
(4) with γ2 = 0 and α2 = 1. The unobserved common factor U
is the measurement error in Y2.
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Supply and Demand: Equations (3) and (4) are supply and
(inverse) demand functions, with Y1 being quantity and Y2 price.
V1 and V2 are unobservables that only affect supply and demand,
respectively, while U denotes an unobserved factor that affects
both sides of the market, such as the price of an imperfect
substitute.

Returns to Schooling: Equations (3) and (4) with γ2 = 0 are
models of wages Y1 and schooling Y2, with U representing an
individual’s unobserved ability or drive (or more precisely, the
residual after projecting unobserved ability on X), which affects
both her schooling and her productivity (Heckman 1974, 1979).

In each of these examples, some or all of the structural pa-
rameters are not identified without additional information. Typi-
cally, identification is obtained by imposing equality constraints
on the coefficients of X. In the measurement error and returns to
schooling examples, assuming that one or more elements of β1

equal zero permits estimation of the Y1 equation using two-stage
least squares with instruments X. For supply and demand, the
typical identification restriction is that each equation possess
this kind of exclusion assumption.

Assume we have no ordinary instruments and no equality
constraints on the parameters. Let Z be a vector of observed
exogenous variables, in particular, Z could be a subvector of
X, or Z could equal X. Assume X is uncorrelated with (U , V1,
V2). Assume also that Z is uncorrelated with (U 2, UVj , V1V2)
and that Z is correlated with V 2

2 . If the model is simultaneous,
assume that Z is also correlated with V 2

1 . An alternative set of
stronger but more easily interpreted sufficient conditions are that
one or both of the idiosyncratic errors Vj be heteroscedastic,
cov(Z,V1V2) = 0, and that the common factor U be condition-
ally independent of Z. These are all standard assumptions, ex-
cept that one usually either imposes homoscedasticity or allows
for heteroscedasticity, rather than requiring heteroscedasticity.

Given these assumptions,

cov(Z, ε1ε2) = cov(Z, α1α2U
2 + α1UV2

+ α2UV1 + V1V2) = 0

cov
(
Z, ε2

2

) = cov
(
Z, α2

2U
2 + 2α2UV2 + V 2

2

)
= cov

(
Z,V 2

2

) �= 0,

which are the requirements for applying this article’s identifica-
tion theorems and associated estimators.

To apply this article’s estimators, it is not necessary to assume
that the errors are actually given by a factor model such as εj =
αjU + Vj . In particular, third and higher moment implications
of factor model or classical measurement error constructions are
not imposed. All that is required for identification and estimation
are the moments

E(Xε1) = 0, E(Xε2) = 0, cov(Z, ε1ε2) = 0, (5)

along with some heteroscedasticity of εj . The moments (5)
provide identification whether or not Z is subvector of X.

1.4 Empirical Examples

Based on earlier working versions of this article, a num-
ber of researchers apply this article’s identification strategy and
associated estimators to a variety of settings where ordinary
instruments are either weak or difficult to obtain.

Giambona and Schwienbacher (2007) applied the method in
a model relating the debt and leverage ratios of firms to the
tangibility of their assets. Emran and Hou (2008) applied it to
a model of household consumption in China based on distance
to domestic and international markets. Sabia (2007) used the
method to estimate equations relating body weight to academic
performance, and Rashad and Markowitz (2007) used it in a
similar application involving body weight and health insurance.
Finally, in a later section of this article, I report results for a
model of food Engel curves where total expenditures may be
mismeasured. All of these studies report that using this arti-
cle’s estimator yields results that are close to estimates based on
traditional instruments (though Sabia 2007 also noted that his
estimates are closer to ordinary least squares). Taken together,
these studies provide evidence that the methodology proposed
in this article may be reliably applied in a variety of real data set-
tings where traditional instrumental variables are not available.

1.5 Literature Review

Surveys of methods of identification in simultaneous sys-
tems include Hsiao (1983), Hausman (1983), and Fuller (1987).
Roehrig (1988) provided a useful general characterization of
identification in situations where nonlinearities contribute to
identification, as is the case here. Particularly relevant for this
article is previous work that obtains identification based on vari-
ance and covariance constraints. With multiple-equation sys-
tems, various homoscedastic factor model covariance restric-
tions are used along with exclusion assumptions in the LISREL
class of models (Joreskog and Sorbom 1984). The idea of us-
ing heteroscedasticity in some way to help estimation appears
in Wright (1928) and so is virtually as old as the method of
instrumental variables itself. Recent articles that use general re-
strictions on higher moments instead of outside instruments as a
source of identification include Dagenais and Dagenais (1997),
Lewbel (1997), Cragg (1997), and Erickson and Whited (2002).

A closely related result to this article’s is Rigobon (2002,
2003), which uses heteroscedasticity based on discrete, multiple
regimes instead of regressors. Some of Rigobon’s identification
results can be interpreted as special cases of this article’s mod-
els in which Z is a vector of binary dummy variables that index
regimes and are not included among the regressors X. Sentana
(1992) and Sentana and Fiorentini (2001) employed a similar
idea for identification in factor models. Hogan and Rigobon
(2003) propose a model that, like this article’s, involves de-
composing the error term into components, some of which are
heteroscedastic.

Klein and Vella (2010) also used heteroscedasticity restric-
tions to obtain identification in linear models without exclusion
restrictions (an application of their method is Rummery, Vella,
and Verbeek 1999), and their model also implies restrictions
on how ε2

1, ε2
2, and ε1ε2 depend on regressors, but not the same

restrictions as those used in the present article. The method
proposed here exploits a different set of heteroscedasticity
restrictions from theirs, and as a result, this article’s estimators
have many features that estimators in Klein and Vella (2010)
do not have, including the following: This article’s assumptions
nest standard mismeasured regressor models and unobserved
factor models, unlike theirs. This article’s estimator extends
to fully simultaneous systems, not just triangular systems, and
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extends to a class of semiparametric models. Klein and Vella
(2003) assumed a multiplicative form of heteroscedasticity
that imposes strong restrictions on how all higher moments
of errors depend on regressors, while this article’s model
places no restrictions on third and higher moments of εj

conditional on X,Z. Finally, this article provides some set
identification results, yielding bounds on parameters, that hold
when point-identifying assumptions are violated.

The assumption used here that a product of errors be un-
correlated with covariates has occasionally been exploited in
other contexts as well, for example, to aid identification in a
correlated random coefficients model, Heckman and Vytlacil
(1998) assumed covariates are uncorrelated with the product of
a random coefficient and a regression model error.

Some articles have exploited GARCH system heteroscedastic
specifications to obtain identification, including King, Sentana,
and Wadhwani (1994) and Prono (2008). Other articles that ex-
ploit heteroscedasticity in some way to aid identification include
Leamer (1981) and Feenstra (1994).

Variables that in past empirical applications have been pro-
posed as instruments for identification might more plausibly be
used as this article’s Z. For example, in the returns to schooling
model, Card (1995) and others propose using measures of access
to schooling, such as distance to or cost of colleges in one’s area,
as wage equation instruments. Access measures may be inde-
pendent of unobserved ability (though see Carneiro and Heck-
man 2002) and may affect the schooling decision. However,
access may not be appropriate as an excluded variable in wage
(or other outcome) equations because access may correlate with
the type or quality of education one actually receives or may be
correlated with proximity to locations where good jobs are avail-
able (see, e.g., Hogan and Rigobon 2003). Therefore, instead of
excluding measures of access to schooling or other proposed
instruments from the outcome equation, it may be more appro-
priate to include them as regressors in both equations and use
them as this article’s Z to identify returns to schooling, given by
γ1 in the triangular model, where Y1 is wages and Y2 is schooling.

The next section describes this article’s main identification
results for triangular and then fully simultaneous systems. This
is followed by a description of associated estimators and an em-
pirical application to Engel curve estimation. Later sections pro-
vide extensions, including set identification (bounds) for when
the point-identifying assumptions do not hold and identification
results for nonlinear and semiparametric systems of equations.

2. POINT IDENTIFICATION

For simplicity, it is assumed that the regressors X are ordinary
random variables with finite second moments, so results are
easily stated in terms of means and variances. However, it will
be clear from the resulting estimators that this can be relaxed
to handle cases such as time trends or deterministic regressors
by replacing the relevant moments with probability limits of
sample moments and sample projections.

2.1 Triangular Model Identification

First, consider the linear triangular model:

Y1 = X′β10 + Y2γ10 + ε1 (6)

Y2 = X′β20 + ε2. (7)

Here, β10 indicates the true value of β1, and similarly for the
other parameters. Traditionally, this model would be identified
by imposing equality constraints on β10. Alternatively, if the
errors ε1 and ε2 were uncorrelated, this would be a recursive
system and so the parameters would be identified. Identifi-
cation conditions are given here that do not require uncorre-
lated errors or restrictions on β10. Example applications include
unobserved factor models such as the mismeasured regressor
model and the returns to schooling model described in the
Introduction.

Assumption A1. Y = (Y1, Y2)′ and X are random vectors.
E(XY ′), E(XY1Y

′), E(XY2Y
′), and E(XX′) are finite and iden-

tified from data. E(XX′) is nonsingular.

Assumption A2. E(Xε1) = 0, E(Xε2) = 0, and, for some
random vector Z, cov(Z, ε1ε2) = 0.

The elements of Z can be discrete or continuous, and Z can
be a vector or a scalar. Some or all of the elements of Z can also
be elements of X. Sections 1.1, 1.2, and 1.3 provide examples
of models satisfying these assumptions.

Define matrices �ZX and �ZZ by

�ZX = E

[(
X

[Z − E(Z)]ε2

)(
X

Y2

)′]
,

�ZZ = E

[(
X

[Z − E(Z)]ε2

)(
X

[Z − E(Z)]ε2

)′]
and let � be any positive definite matrix that has the same
dimensions as �ZZ .

Theorem 1. Let Assumptions A1 and A2 hold for the model
of Equations (6) and (7). Assume cov(Z, ε2

2) �= 0. Then, the
structural parameters β10, β20, γ10, and the errors ε are identified,
and

β20 = E(XX′)−1E(XY2)(
β10

γ10

)
= (

� ′
ZX��ZX

)−1
� ′

ZX�E

[(
X

[Z − E(Z)]ε2

)
Y1

]
.

(8)

Proofs are in the Appendix. For � = �−1
ZZ , Theorem 1 says

that the structural parameters β10 and γ10 are identified by an
ordinary linear two-stage least squares regression of Y1 on X
and Y2 using X and [Z − E(Z)]ε2 as instruments. The assump-
tion that Z is uncorrelated with ε1ε2 means that (Z − Z)ε2 is
a valid instrument for Y2 in Equation (6) since it is uncorre-
lated with ε1, with the strength of the instrument (its correlation
with Y2 after controlling for the other instruments X) being
proportional to the covariance of (Z − Z)ε2 with ε2, which cor-
responds to the degree of heteroscedasticity of ε2 with respect
to Z.

Taking � = �−1
ZZ corresponds to estimation based on ordi-

nary linear two-stage least squares. Other choices of � may
be preferred for increased efficiency, accounting for error het-
eroscedasticity. Efficient GMM estimation of this model is dis-
cussed later.

The requirement that cov(Z, ε2
2) be nonzero can be empir-

ically tested, because this covariance can be estimated as the
sample covariance between Z and the squared residuals from
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linearly regressing Y2 on X. For example, we may apply a
Breusch and Pagan (1979) test for this form of heteroscedas-
ticity to Equation (7). Also, if cov(Z, ε2

2) is close to or equal to
zero, then (Z − Z)ε2 will be a weak or useless instrument, and
this problem will be evident in the form of imprecise estimates
with large standard errors. Hansen (1982) type tests of GMM
moment restrictions can also be implemented to check validity
of the model’s assumptions, particularly Assumption A2.

2.2 Fully Simultaneous Linear Model Identification

Now consider the fully simultaneous model

Y1 = X′β10 + Y2γ10 + ε1 (9)

Y2 = X′β20 + Y1γ20 + ε2, (10)

where the errors ε1and ε2 may be correlated, and again no equal-
ity constraints are imposed on the structural parameters β10, β20,
γ10, and γ20.

In some applications, it is standard or convenient to normalize
the second equation so that, like the first equation, the coefficient
of Y1 is set equal to 1 and the coefficient of Y2 is to be estimated.
An example is supply and demand, with Y1 being quantity and
Y2 price. The identification results derived here immediately
extend to handle that case, because identification of γ20 implies
identification of 1/γ20 and vice versa when γ20 �= 0, which is
the only case in which one could normalize the coefficient of Y1

to equal 1 in the second equation.
Some assumptions in addition to A1 and A2 are required to

identify this fully simultaneous model. Given Assumption A2,
reduced-form errors Wj are:

Wj = Yj − X′E(XX′)−1E(XYj ). (11)

Assumption A3. Define Wj by Equation (11) for j = 1, 2.
The matrix �W , defined as the matrix with columns given by
the vectors cov(Z,W 2

1 ) and cov(Z,W 2
2 ), has rank 2.

Assumption A3 requires Z to contain at least two elements
(though sometimes one element of Z can be a constant; see
Corollary 1 later). If E(ε1ε2 | Z̃) = E(ε1ε2) for some scalar Z̃,
as would arise if the common unobservable U is independent of
Z̃, then Assumptions A2 and A3 might be satisfied by letting Z
be a vector of different functions of Z̃, for example, defining Z
as the vector of elements Z̃ and Z̃2 (as long as Z̃ is not binary).

Assumption A3 is testable, because one may estimate Wj as
the residuals from linearly regressing Yj on X and then use Z
and the estimated Wj to estimate cov(Z,W 2

j ). A Breusch and
Pagan (1979) test may be applied to each of these reduced-
form regressions. An estimated matrix rank test such as Cragg
and Donald (1997) could be applied to the resulting esti-
mated matrix �W , or perhaps more simply test if the deter-
minant of �′

W�W is zero, since rank 2 requires that �′
W�W be

nonsingular.

Assumption A4. Let � be the set of possible values of (γ10,
γ20). If (γ1, γ2) ∈ �, then (γ −1

2 , γ −1
1 ) /∈ �.

Given any nonzero values of (γ10, γ20), solving Equation (9)
for Y2 and Equation (10) for Y1 yields another representation
of the exact same system of equations but having coefficients

(γ −1
20 ,γ −1

10 ) instead of (γ10,γ20). As long as (γ10,γ20) �= (1, 1) and
no restrictions are placed on β10 and β20, Assumption A4 sim-
ply says that we have chosen (either by arbitrary convenience
or external knowledge) one of these two equivalent representa-
tions of the system. Assumption A4 is not needed for models
that break this symmetry either by being triangular, as in Theo-
rem 1, or through an exclusion assumption, as in Corollary 2. In
other models, the choice of � may be determined by context, for
example, many economic models (like those requiring station-
ary dynamics or decreasing returns to scale) require coefficients
such as γ1 and γ2 to be less than 1 in absolute value, which
then defines a set � that satisfies Assumption A4. In a supply-
and-demand model, � may be defined by downward sloping
demand and upward sloping supply curves, since in that case, �
only includes elements γ1,γ2 where γ1 ≥ 0 and γ2 ≤ 0, and any
values that violate Assumption A4 would have the wrong signs.
This is related to Fisher’s (1976) finding that sign constraints
in simultaneous systems yield regions of admissible parameter
values.

Theorem 2. Let Assumptions A1, A2, A3, and A4 hold in the
model of Equations (9) and (10). Then, the structural parameters
β10, β20, γ10, and γ20 and the errors ε are identified.

2.3 Additional Simultaneous Model Results

Lemma 1. Define �ε to be the matrix with columns given by
the vectors cov(Z, ε2

1) and cov(Z, ε2
2). Let Assumptions A1 and

A2 hold and assume |γ10γ20| �= 1. Then, Assumption A3 holds
if and only if �ε has rank 2.

Lemma 1 assumes γ10γ20 �= 1 and γ10γ20 �= −1. The case
γ10γ20 = 1 is ruled out by Assumption A4 in Theorem 2. This
case cannot happen in the returns to schooling or measurement
error applications because triangular systems have γ20 = 0.
Having γ10γ20 = 1 also cannot occur in the supply-and-demand
application, because the slopes of supply and demand curves
make γ10γ20 ≤ 0. As shown in the proof of Theorem 2, the
case of γ10γ20 = −1 is ruled out by Assumption A3, because it
causes �W to have rank less than 2. However, Theorem 1 can
be relaxed to allow γ10γ20 = −1, by replacing Assumption A3
with the assumption that �ε has rank 2, because then Equation
(27) in the proof still holds and identifies γ10/γ20, which along
with γ10γ20 = −1 and some sign restrictions could identify γ10

and γ20 in this case. However, Assumption A3 has the advantage
of being empirically testable.

In either case, Theorem 2 requires both ε1 and ε2 to be het-
eroscedastic with variances that depend upon Z, since otherwise
the vectors cov(Z, ε2

1) and cov(Z, ε2
2) will equal zero. Moreover,

the variances of ε1 and ε2 must be different functions of Z for
the rank of �ε to be 2.

Corollary 1. Let Assumptions A1, A2, A3, and A4 hold in
the model of Equations (9) and (10), replacing cov(Z, ε1ε2) in
Assumption A2 with E(Zε1ε2) and replacing cov(Z,W 2

j ) with
E(ZW 2

j ) in Assumption A3, for j = 1, 2. Then, the structural
parameters β10, β20, γ10, and γ20 and the errors ε are identified.

Corollary 1 can be used in applications where E(ε1ε2) = 0.
Theorem 2 could also be used in this case, but Corollary 1
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provides additional moments. In particular, if only a scalar Z̃

is known to satisfy cov(Z̃, ε1ε2) = 0, then identification by
Theorem 2 will fail because the rank condition in Assumption
A3 is violated with Z = Z̃, but identification may still be
possible using Corollary 1 because there we may let Z = (1, Z̃).

Corollary 2. Let Assumptions A1 and A2 hold for the model
of Equations (9) and (10). Assume cov(Z, ε2

2) �= 0, that some
element of β20 is known to equal zero and the corresponding
element of β10 is nonzero. Then, the structural parameters β10,
β20, γ10, and γ20 and the errors ε are identified.

Corollary 2 is like Theorem 1, except that it assumes an
element of β20 is zero instead of assuming γ20 is zero to iden-
tify Equation (10). Then, as in Theorem 1, Corollary 2 uses
cov(Z, ε1ε2) = 0 to identify Equation (9) without imposing the
rank 2 condition of Assumption A3 and the inequality con-
straints of Assumption A4. Only a scalar Z is needed for iden-
tification using Theorem 1 or Corollary 1 or 2.

3. ESTIMATION

3.1 Simultaneous System Estimation

Consider estimation of the structural model of Equations (9)
and (10) based on Theorem 2. Define S to be the vector of
elements of Y and X, and the elements of Z that are not already
contained in X, if any.

Let µ = E(Z), and let θ denote the set of parameters
{γ1, γ2, β1, β2, µ}. Define the vector valued functions:

Q1(θ, S) = X(Y1 − X′β1 − Y2γ1)

Q2(θ, S) = X(Y2 − X′β2 − Y1γ2)

Q3(θ, S) = Z − µ

Q4(θ, S) = (Z − µ) (Y1 − X′β1 − Y2γ1)

× (Y2 − X′β2 − Y1γ2).

Define Q(θ, S) to be the vector obtained by stacking the above
four vectors into one long vector.

Corollary 3. Assume Equations (9) and (10) hold. Define θ ,
S, and Q(θ, S) as above. Let Assumptions A1, A2, A3, and A4
hold. Let 	 be the set of all values θ might take on, and let θ0

denote the true value of θ . Then, the only value of θ ∈ 	 that
satisfies E[Q(θ, S)] = 0 is θ = θ0.

A simple variant of Corollary 3 is that if E(ε1ε2) = 0, then
µ can be dropped from θ , with Q3 dropped from Q, and the
Z − µ term in Q4 replaced with just Z.

Given Corollary 3, GMM estimation of the model of Equa-
tions (9) and (10) is completely straightforward. With a sample
of n observations S1, . . . , Sn, the standard Hansen (1982) GMM
estimator is

θ̂ = arg min
θ∈	

n∑
i=1

Q(θ, Si)
′
−1

n

n∑
i=1

Q(θ, Si) (12)

for some sequence of positive definite 
n. If the observations
Si are independently and identically distributed and if 
n is
a consistent estimator of 
0 = E[Q(θ0, S)Q(θ0, S)′], then the

resulting estimator is efficient GMM with

√
n(θ̂ − θ0)

d→N

(
0, E

(
∂Q(θ0, S)

∂θ ′

)

−1

0

× E

(
∂Q(θ0, S)

∂θ ′

)′)
. (13)

More generally, with dependent data, standard time-series
versions of GMM would be directly applicable. Alternative
moment-based estimators with possibly better small-sample
properties, such as generalized empirical likelihood, could be
used instead of GMM (see, e.g., Newey and Smith 2004). Also,
if these moment conditions are weak (as might occur if the
errors are close to homoskedastic), then alternative limiting dis-
tribution theory based on weak instruments, such as Staiger
and Stock (1997), would be immediately applicable. See Stock,
Wright, and Yogo (2002) for a survey of such estimators.

The standard regularity conditions for the large-sample prop-
erties of GMM impose compactness of 	. When γ20 �= 0, this
must be reconciled with Assumption A4 and with Lemma 1. For
example, in the supply-and-demand model, we might define 	

so that the product of the first two elements of every θ ∈ 	 is
finite, nonpositive, and excludes an open neighborhood of –1.
This last constraint could be relaxed, as discussed after Lemma
1.

If one wished to normalize the second equation so that the
coefficient of Y1 equaled 1, as might be more natural in a supply-
and-demand system, then the same GMM estimator could be
used just by replacing Y2 − X′β2 − Y1γ2 in the Q2 and Q4

functions with Y1 − X′β2 − Y2γ2, redefining β2 and γ2 accord-
ingly.

Based on the proof of Theorem 2, a numerically simpler but
possibly less efficient estimator would be the following. First,
let Ŵj be the vector of residuals from linearly regressing Yj on
X. Next, let Ĉjkh be the sample covariance of Ŵj Ŵk with Zh,
where Zh is the h′th element of the vector Z. Assume Z has a
total of K elements. Based on Equation (27), estimate γ1 and γ2

by:

(γ̂1, γ̂2)=arg min
(γ1γ2)∈�

K∑
h=1

(
(1+γ1γ2)Ĉ12h−γ1Ĉ22h − γ2Ĉ11h

)2
,

where � is a compact set satisfying Assumption A4. The above
estimator for γ1 and γ2 is numerically equivalent to an ordinary
nonlinear least squares regression over K observations, where
K is the number of elements of Z. Finally, β1 and β2 may be
estimated by linearly regressing Y1 − Y2γ̂1 and Y2 − Y1γ̂2 on X,
respectively. The consistency of this procedure follows from the
consistency of each step, which in turn is based on the steps
of the identification proof of Theorem 1 and the consistency of
regressions and sample covariances.

In practice, this simple procedure might be useful for gener-
ating consistent starting values for efficient GMM.

3.2 Triangular System Estimation

The GMM estimator used for the fully simultaneous system
can be applied to the triangular system of Theorem 1 by setting
γ2 = 0. Define S and µ as before, and now let θ = {γ1, β1, β2, µ}
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and

Q1(θ, S) = X(Y1 − X′β1 − Y2γ1)

Q2(θ, S) = X(Y2 − X′β2)

Q3(θ, S) = Z − µ

Q4(θ, S) = (Z − µ) (Y1 − X′β1 − Y2γ1)

× (Y2 − X′β2).

Let Q(θ, S) be the vector obtained by stacking the above four
vectors into one long vector, and we immediately obtain Corol-
lary 4.

Corollary 4. Assume Equations (6) and (7) hold. Define θ ,
S, and Q(θ, S) as above. Let Assumptions A1 and A2 hold with
cov(Z,W 2

2 ) �= 0. Let 	 be the set of all values θ might take on,
and let θ0 denote the true value of θ . Then, the only value of
θ ∈ 	 that satisfies E[Q(θ, S)] = 0 is θ = θ0.

The GMM estimator (12) and limiting distribution (13) then
follow immediately.

Based on Theorem 1, a simpler estimator of the triangular
system of Equations (6) and (7) is as follows. With γ20 = 0, β20

can be estimated by linearly regressing Y2 on X. Then, letting
ε̂2i be the residuals from this regression, β10 and γ10 can be es-
timated by an ordinary linear two-stage least squares regression
of Y1 on Y2 and X, using X and (Z − Z)̂ε2 as instruments, where
Z is the sample mean of Z. Letting overbars denote sample
averages, the resulting estimators are:

β̂2 = XX′−1
XY2, ε̂2 = Y2 − X′β̂2

⎛⎝ β̂1

γ̂1

⎞⎠ = (
�̂ ′

ZX �̂−1
ZZ �̂ZX

)−1
�̂ ′

ZX�̂−1
ZZ

⎛⎝ XY1

(Z − Z)̂ε2, Y1

⎞⎠ ,

(14)

where �̂ZX replaces the expectation defining �ZX with a sam-
ple average, and similarly for �̂; in particular, for ordinary
two-stage least squares, �̂ would be a consistent estimator of
�̂−1

ZZ . The limiting distribution for β̂2 is standard ordinary least
squares. The distribution for β̂1 and γ̂1 is basically that of or-
dinary two-stage least squares, except account must be taken
of the estimation error in the instruments (Z − Z)̂ε2. Using the
standard theory of two-step estimators (see, e.g., Newey and
McFadden 1994), with independent, identically distributed ob-
servations, this gives:

√
n

[(
β̂1

γ̂1

)
−
(

β10

γ10

)]
d→N

(
0,
(
� ′

ZX��ZX

)−1

×� ′
ZX�var

(
Xε1

R

)
��ZX

(
� ′

ZX��ZX

)−1
)

,

where

R = [Z − E(Z)]ε2ε1 − cov(Z,X′)E(XX′)−1Xε2

is the influence function associated with (Z − Z)̂ε2ε1.
While numerically simpler, since no numerical searching is

required, this two-stage least square estimator could be less ef-
ficient than GMM. It will be numerically identical to GMM

when the parameters are exactly identified rather than overiden-
tified, that is, when Z is a scalar. More generally, this two-stage
least squares estimator could be used for generating consistent
starting values for efficient GMM estimation.

3.3 Extension: Additional Endogenous Regressors

We consider two cases here: additional endogenous regressors
for which we have ordinary outside instruments, and additional
endogenous regressors to be identified using heteroscedasticity.

In the triangular system, the estimator can be described as
a linear two-stage least squares regression of Y1 on X and on
Y2, using X and an estimate of [Z − E(Z)]ε2 as instruments.
Suppose now that in addition to Y2, one or more elements of
X are also endogenous. Suppose for now that we also have a
set of ordinary instruments P (so P includes all the exogenous
elements of X and enough additional outside instruments so that
P has at least the same number of elements as X). It then fol-
lows that estimation could be done by a linear two-stage least
squares regression of Y1 on X and on Y2, using P and an es-
timate of [Z − E(Z)]ε2 as instruments. Note, however, that it
will now be necessary to also estimate the Y2 equation by two-
stage least squares, that is, we must first regress Y2 on X by
two-stage least squares using instruments P to obtain the esti-
mated coefficient β̂2, before constructing ε̂2 = Y2 − X′β̂2. Then,
as before, the estimate of [Z − E(Z)]ε2 is (Z − Z)̂ε2. Alter-
natively, the GMM estimator now has Q1(θ, S) and Q2(θ, S)
given by Q1(θ, S) = P (Y1 − X′β1 − Y2γ1) and Q2(θ, S) =
P (Y2 − X′β2), while Q3(θ, S) and Q4(θ, S) are the same
as before.

Similar logic extends to the case where we have more than one
endogenous regressor to be identified from heteroscedasticity.
For example, suppose we have the model:

Y1 = X′β10 + Y2γ10 + Y3δ10 + ε1

Y2 = X′β20 + ε2, Y3 = X′β30 + ε3.

So, now we have two endogenous regressors, Y2 and Y3, with
no available outside instruments or exclusions. If our assump-
tions hold both for ε2 and for ε3 in place of ε2, then the
model for Y1 can be estimated by two-stage least squares, using
X and estimates of both [Z − E(Z)]ε2 and [Z − E(Z)]ε3 as
instruments.

4. ENGEL CURVE ESTIMATES

An Engel curve for food is empirically estimated, where total
expenditures may be mismeasured. Total expenditures are sub-
ject to potentially large measurement errors, due in part to in-
frequently purchased items (see, e.g., Meghir and Robin 1992).
The data consist of the same set of demographically homoge-
neous households that were used to analyze Engel curves in
Banks, Blundell, and Lewbel (1997). These are all households
in the United Kingdom Family Expenditure Survey 1980–1982
composed of two married adults without children, living in the
Southeast (including London). The dependent variable Y1 is the
food budget share and the possibly mismeasured regressor Y2 is
log real total expenditures. Sample means are Y 1 = 0.285 and
Y 2 = 0.599. The other regressors X are a constant, age, spouse’s
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age, squared ages, seasonal dummies, and dummies for spouse
working, gas central heating, ownership of a washing machine,
one car, and two cars. There are 854 observations.

The model is Y1 = X′β1 + Y2γ1 + ε1. This is the Working
(1943) and Leser (1963) functional form for Engel curves. Non-
parametric and parametric regression analyses of these data
show that this functional form fits food (though not other) bud-
get shares quite well (see, e.g., Banks, Blundell, and Lewbel
1997, figure 1A).

Table 1 summarizes the empirical results. Ordinary least
squares, which does not account for mismeasurement, has an
estimated log total expenditure coefficient of γ̂1 = −0.127. Or-
dinary two-stage least squares, using log total income as an
instrument, substantially reduces the estimated coefficient to
γ̂1 = −0.086. This is model TSLS 1 or equivalently GMM 1 in
Table 1. TSLS1 and GMM 1 are exactly identified and so are
numerically equivalent.

If we did not observe income for use as an instrument, we
might instead apply the GMM estimator based on Corollary
4, using the moments cov(Z, ε1ε2) = 0. As discussed in the
Introduction, with classical measurement error, we may let Z
equal all the elements of X except the constant. The result is
model GMM 2 in Table 1, which yields γ̂1 = −0.078. This is
relatively close to the estimate based on the external instru-
ment log income, as would be expected if income is a valid
instrument and if this article’s methodology for identification
and estimation without external instruments is also valid. The
standard errors in GMM 2 are a good bit higher than those of
GMM 1, suggesting that not having an external instrument hurts
efficiency.

The estimates based on Corollary 4 are overidentified, so the
GMM 2 estimates differ numerically from the two-stage least
squares version of this estimator, reported as TSLS 2, which
uses (Z − Z)̂ε2 as instruments (Equation (14)). The GMM 2
estimates are closer than TSLS 2 to the income-instrument-
based estimates GMM 1 and have smaller standard errors, which
shows that the increased asymptotic efficiency of GMM is valu-
able here. A Hansen (1982) test fails to reject the overidentifying
moments in this model at the 5% level, though the p-value of
6.5% is close to rejecting.

Table 1 also reports estimates obtained using both mo-
ments based on the external instrument, log income, and on
cov(Z, ε1ε2) = 0. The results in TSLS 3 and GMM 3 are very
similar to TSLS 1 and GMM 1, which just use the external
instrument. This is consistent with validity of both sets of iden-
tifying moments, but with the outside instrument being much
stronger or more informative, as expected. The Hansen test also
fails to reject this joint set of overidentifying moments, with a
p-value of 12.5%.

To keep the analysis simple, possible mismeasurement of
the food budget share arising from mismeasurement of total
expenditures, as in Lewbel (1996), has been ignored. This is not
an uncommon assumption, for example, Hausman, Newey, and
Powell (1995) is a prominent example of Engel curve estimation
assuming that budget shares are not mismeasured and log total
expenditures suffer classical measurement error (though with
the complication of a polynomial functional form). However,
as a check, the Engel curves were reestimated in the form of
quantities of food regressed on levels of total expenditures. The

results were more favorable than those reported in Table 1. In
particular, the ordinary least squares estimate of the coefficient
of total expenditures was 0.124, the two-stage least squares
estimate using income as an instrument was 0.172, and the
two-stage least squares estimate using this article’s moments
was 0.174, nearly identical to the estimate based on the outside
instrument.

One may question the validity of the assumptions for apply-
ing Theorem 1 in this application. Also, although income is
commonly used as an outside instrument for total expenditures,
it could still have flaws as an instrument (e.g., it is possible
for reported consumption and income to have common sources
of measurement errors). In particular, the estimates show a re-
versal of the usual attenuation direction of measurement error
bias, which suggests some violation of the assumptions of the
classical measurement error model, for example, it is possible
that the measurement error could be negatively correlated with
instruments or with other covariates.

Still, it is encouraging that this article’s methodology for ob-
taining estimates without external instruments yields estimates
that are close to (though not as statistically significant as) esti-
mates that are obtained by using an ordinary external instrument,
and the resulting overidentifying moments are not statistically
rejected.

In practice, this article’s estimators will be most useful for
applications where external instruments are either weak or un-
available. The reason for applying it here in the Engel curve
context, where a strong external instrument exists, is to verify
that the method works in real data, in the sense that this article’s
estimator, applied without using the external instrument, pro-
duces estimates that are very close to those that were obtained
when using the outside instrument. The fact that the method is
seen to work in this context where the results can be checked
should be encouraging for other applications where alternative
strong instruments are not available.

5. SET IDENTIFICATION-RELAXING IDENTIFYING
ASSUMPTIONS

This article’s methodology is based on three assumptions—
namely, regressors X uncorrelated with errors ε, heteroscedas-
tic errors ε, and cov(Z, ε1ε2) = 0. As shown earlier, this last
assumption arises from classical measurement error and omit-
ted factor models, but one may still question whether it holds
exactly in practice. Theorem 3 shows that one can still identify
sets, specifically interval bounds, for the model parameters when
this assumption is violated by assuming this covariance is small
rather than zero. Small here means that this covariance is small
relative to the heteroscedasticity in ε2; specifically, Theorem 3
assumes that the correlation between Z and ε1ε2 is smaller (in
magnitude) than the correlation between Z and ε2

2.
For convenience, Theorem 3 is stated using a scalar Z, but

given a vector Z, one could exploit the fact that Theorem 3
would then hold for any linear combination of the elements of
Z, and one could choose the linear combination that minimizes
the estimated size of the identified set.

Define Wj by Equation (11) for j = 1, 2. Given a random
scalar Z and a scalar constant ζ define �1 as the set of all values
of γ1 that lie in the closed interval bounded by the two roots (if
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Table 1. Engel Curve Estimates

OLS TSLS 1 TSLS 2 TSLS 3 GMM 1 GMM 2 GMM 3
β11 0.361 0.336 0.318 0.336 0.336 0.332 0.337

(0.0056) (0.012) (0.035) (0.011) (0.012) (0.028) (0.011)
γ1 –0.127 –0.086 –0.055 –0.086 –0.086 –0.078 –0.087

(0.0083) (0.020) (0.058) (0.018) (0.020) (0.047) (0.018)
χ 2 18.8 17.7
d.f. 11 12
p-value 0.065 0.125

NOTES: OLS is an ordinary least squares regression of food share Y1 on household characteristics X and log total expenditures Y2. TSLS 1 is this regression estimated using two-stage
least squares with log real income as an ordinary external instrument. TSLS 2 is this article’s heteroscedasticity-based estimator, Equation (14), which uses (Z − Z)̂ε2 as instruments,
where Z is all the regressors X except the constant. TSLS 3 uses both (Z − Z)̂ε2 and the outside variable log real income as instruments. GMM 1, GMM 2, and GMM 3 are the same
three models estimated by efficient GMM, based on Corollary 4.
Reported above are β11 = X

′
β, which is the Engel curve intercept at the mean of the X regressors, and γ1, which is the Engel curve slope coefficient of Y2. Standard errors are in

parentheses. Also reported is the Hansen (1982) specification test chi-squared statistic for the overidentified GMM models 2 and 3, along with its degrees of freedom and p-value.

they are real) of the quadratic equation:

[cov (W1W2, Z)]2[
cov

(
W 2

2 , Z
)]2 − var (W1W2)

var
(
W 2

2

) τ 2 + 2

(
cov

(
W1W2,W

2
2

)
var

(
W 2

2

) τ 2

− cov (W1W2, Z)

cov
(
W 2

2 , Z
) ) γ1 + (

1 − τ 2
)
γ 2

1 = 0. (15)

Also, define B1 as the set of all values of β1 =
E(XX′)−1E[X(Y1 − Y2γ1)] for each γ1 ∈ �1.

Theorem 3. Let Assumption A1 hold for the model of Equa-
tions (6) and (7). Assume E(Xε1) = 0, E(Xε2) = 0, and for
some observed random scalar Z and some nonnegative constant
τ < 1, |corr(Z, ε1ε2)| ≤ τ |corr(Z, ε2

2)|. Then the structural pa-
rameters γ10 and β10 are set identified by γ10 ∈ �1, β10 ∈ B1,
and β20 is point identified by β20 = E(XX′)−1E(XY2).

Note that an implication of Theorem 3 is that Equation (15)
has real roots whenever |corr(Z, ε1ε2)| < |corr(Z, ε2

2)|, and τ is
defined as an upper bound on the ratio of these two correlations.
The smaller the value of τ is, the smaller will be the identified
sets �1 and B1, and hence the tighter will be the bounds on γ10

and β10 given by Theorem 3. One can readily verify that the
sets �1 and B1 collapse to points, corresponding to Theorem 1,
when τ = 0.

An obvious way to construct estimates based on Theorem 3
is to substitute Wj = Yj − X′E(XX′)−1E(XYj ) into Equation
(15), replace all the expectations in the result with sample aver-
ages, and then solve for the two roots of the resulting quadratic
equation given τ . These roots will then be consistent estimates
of the boundary of the interval that brackets γ10.

To illustrate the size of the bounds implied by Theorem 3,
consider the model:

Y1 = β11 + Xβ12 + Y2γ1 + ε1, ε1 = U + eXS1 (16)

Y2 = β21 + Xβ22 + ε2, ε2 = U + e−XS2, (17)

where X, U, S1, and S2 are independent standard normal scalars,
Z = X, and β11 = β12 = β21 = β22 = γ1 = 1. A supplemental
appendix to this article includes a Monte Carlo analysis of the
estimator using this design. It can be shown by tedious but
straightforward algebra that for this design, Equation (15) re-

duces to:

1− 12+12e2−e4+3e8

2+4e2−e4 + 3e8
τ 2+2

(
5+7e2−e4+3e8

2+4e2−e4+3e8
τ 2−1

)
γ10

+ (
1 − τ 2

)
γ 2

10 = 0. (18)

Evaluating these equations for various values of τ shows that the
identified region �1 for γ10 is quite narrow unless τ is very close
to its upper bound of 1. In this design, the true value is γ10 = 1,
which equals the identified region when τ = 0. For τ = 0.1, the
identified interval based on Equation (18) is [0.995, 1.005], and
for τ = 0.5, the identified interval is [0.973, 1.023]. Even for
the loose bound on cov(Z, ε1ε2) given by τ = 0.9, the identified
interval is still the rather narrow range [0.892, 1.084].

6. NONLINEAR MODEL EXTENSIONS

This section considers extending the model to allow for non-
linear functions of X. Details regarding regularity conditions and
limiting distributions for associated estimators are not provided,
because they are immediate applications of existing estimators
once the required identifying moments are established.

6.1 Semiparametric Identification

Consider the model

Y1 = g1(X) + Y2γ10 + ε1 (19)

Y2 = g2(X) + Y1γ20 + ε2, (20)

where the functions gj (X) are unknown. In this simultaneous
system, each equation is partly linear as in Robinson (1988).

Assumption B1. Y = (Y1, Y2)′, where Y1 and Y2 are random
variables. For some random vector X, the functions E(Y | X)
and E(YY ′ | X) are finite and identified from data.

Given a sample of observations of Y and X, the conditional
expectations in Assumption B1 could be estimated by nonpara-
metric regressions, and so would be identified. These conditional
expectations are the reduced form of the underlying structural
model.

Assumption B2. E(ε1 | X) = 0, E(ε2 | X) = 0, and for some
random vector Z, cov(Z, ε1ε2) = 0.
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As before, the elements of Z can all be elements of X also, so
no outside instruments are required. No exclusion assumptions
are imposed, so all of the same regressors X that appear in g1

can also appear in g2, and vice versa. If εj = Uαj + Vj , where
U, V1, and V2 are mutually uncorrelated (conditioning on Z),
cov(Z, ε1ε2) = 0 if Z is uncorrelated with U 2.

Assumption B3. Define Wj = Yj − E(Yj | X) for j = 1, 2.
The matrix �W , defined as the matrix with columns given by
the vectors cov(Z,W 2

1 ) and cov(Z,W 2
2 ), has rank 2.

Assumption B3 is analogous to Assumption A3, but employs
a different definition of Wj . These definitions will coincide if
the conditional expectation of Y given X is linear in X. Lemma
1 continues to hold with this new definition of Wj and hence
of �W , and more generally heteroscedasticity of W1 and W2

implies heteroscedasticity of ε.

Theorem 4. Let Equations (19) and (20) hold. If Assumptions
B1 and B2 hold, cov(Z, ε2

2) �= 0, and γ20 = 0, then the structural
parameter γ10, the functions g1(X) and g2(X), and the variance
of ε are identified. If Assumptions B1, B2, B3, and A4 hold,
then the structural parameters γ10 and γ20, the functions g1(X)
and g2(X), and the variance of ε are identified.

An immediate corollary of Theorem 4 is that the partly linear
simultaneous system

Y1 = h1(X1) + X2β10 + Y2γ10 + ε1 (21)

Y2 = h2(X1) + X2β20 + Y1γ20 + ε2, (22)

where X = (X1, X2) will also be identified, since gj (X) =
hj (X1) + X2βj0 is identified.

6.2 Nonlinear Model Estimation

Consider the model

Y1 = G1(X,β0) + Y2γ10 + ε1 (23)

Y2 = G2(X,β0) + Y1γ20 + ε2, (24)

where the functions Gj (X,β0) are known and the parameter
vector β0, which could include γ1 and γ2, is unknown. This
generalizes Equations (3) and (4) by allowing nonlinear func-
tions of X. Letting gj (X) = Gj (X,β0), Theorem 4 provides
sufficient conditions for identification of this model, assum-
ing that β0 is identified given identification of the functions
gj (X) = Gj (X,β0). The immediate analog to Corollary 3 is
then that β0, γ10, γ20, and µ0 can be estimated from the moment
conditions:

E[(Y1 − G1(X,β0) − Y2γ10) | X] = 0

E[(Y2 − G2(X,β0) − Y1γ20) | X] = 0

E(Z − µ0) = 0

E[(Z − µ0) [Y1 − G1(X,β0) − Y2γ10]

× [Y2 − G2(X,β0) − Y1γ20] = 0.

For efficient estimation in this case, where some of the mo-
ments are conditional, see, for example, Chamberlain (1987),
Newey (1993), and Kitamura, Tripathi, and Ahn (2003). Ordi-
nary GMM can be used for estimation by replacing the first two

conditional moments above with unconditional moments:

E[ζ (X)(Y1 − G1(X,β0) − Y2γ10)] = 0

E[ζ (X)(Y2 − G2(X,β0) − Y1γ20)] = 0.

For some chosen vector valued function ζ (X), asymptotic ef-
ficiency may be obtained by using an estimated optimal ζ (X);
see, for example, Newey (1993) for details.

As in the linear model, some of these moments may be weak,
which would suggest the use of weak instrument limiting distri-
butions in the GMM estimation. See Stock, Wright, and Yogo
(2002) for a survey of applicable weak moment procedures.

6.3 Semiparametric Estimation

Consider estimation of the partly linear system of Equations
(19) and (20), where the functions gj (X) are not parameterized.
We now have identification based on the moments:

E[Y1 − g1(X) − Y2γ10 | X] = 0

E[Y2 − g2(X) − Y1γ20 | X] = 0

E(Z − µ0) = 0

E[(Z − µ0) (Y1 − g1(X) − Y2γ10)

× (Y2 − g2(X1) − Y1γ20)] = 0.

These are conditional moments containing unknown parame-
ters and unknown functions and so general estimators for these
types of models may be applied. Examples include Ai and Chen
(2003), Otsu (2003), and Newey and Powell (2003).

Alternatively, the following estimation procedure could be
used, analogous to the numerically simple estimator for linear
simultaneous models described earlier. Assume we have n in-
dependent, identically distributed observations. Let Ĥj (X) be a
uniformly consistent estimator of Hj (X) = E(Yj | X), for ex-
ample, a kernel or local polynomial nonparametric regression of
Yj on X. Now, as defined by Assumption B3, Wj = Yj − Hj (X),
so let Ŵji = Yji − Ĥj (Xi) for each observation i. Next, let Ĉjkh

be the sample covariance of Ŵj Ŵk with Zh, where Zh is the h′th
element of the vector Z. Assume Z has a total of K elements.
Based on Equation (27), estimate γ1 and γ2 by

(γ̂1, γ̂2)=arg min
(γ1,γ2)∈�

K∑
h=1

(
(1+γ1γ2)Ĉ12h−γ1Ĉ22h−γ2Ĉ11h

)2
,

where � is a compact set satisfying Assumption A4. The above
estimator for γ1 and γ2 is numerically equivalent to an ordinary
nonlinear least squares regression over K observations of data,
where K is the number of elements of Z. In a triangular sys-
tem, that is, with γ2 = 0, this step reduces to a linear regression
for estimating γ1. Finally, estimates of the functions g1(X) and
g2(X) are obtained by nonparametrically regressing Y1 − Y2γ̂1

and Y2 − Y1γ̂2 on X, respectively. The consistency of this pro-
cedure follows from the consistency of each step, which in turn
is based on the steps of the identification proof of Theorem 4.

This estimator of γ̂1 and γ̂2 is an example of a semiparamet-
ric estimator with nonparametric plug-ins (see, e.g., section 8
of Newey and McFadden 1994). Unlike Ai and Chen (2003),
this numerically simple procedure might not yield efficient esti-
mates of γ̂1 and γ̂2. However, assuming that γ̂1 and γ̂2 converge
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at a faster rate than nonparametric regressions, the limiting dis-
tributions of the estimates of the functions g1(X) and g2(X)
will be the same as for ordinary nonparametric regressions of
Y1 − Y2γ10 and Y2 − Y1γ20 on X, respectively.

Further extension to estimation of the partly linear system
of Equations (21) and (22) is immediate. For this model, the
Assumption B2 moments E(ε1 | X) = 0, E(ε2 | X) = 0, and
cov(Z, ε1ε2) = 0 are:

E[Y1 − h1(X1) − X2β10 − Y2γ10 | X] = 0

E[Y2 − h2(X1) − X2β20 − Y1γ20 | X] = 0

E(Z − µ0) = 0

E[(Z − µ0) [Y1 − h1(X1) − X2β10 − Y2γ10]

× [Y2 − h2(X1) − X2β20 − Y1γ20] = 0,

which could again be consistently estimated by the above de-
scribed procedure, replacing the nonparametric regression steps
with partly linear nonparametric regression estimators, such as
Robinson (1988), or by directly applying an estimator, such as
Ai and Chen (2003), to these moments.

7. CONCLUSIONS

This article describes a new method of obtaining identification
in mismeasured regressor models, triangular systems, simulta-
neous equation systems, and some partly linear semiparametric
systems. The identification comes from observing a vector of
variables Z (which can equal or be a subset of the vector of
model regressors X) that are uncorrelated with the covariance
of heteroscedastic errors. The existence of such a Z is shown
to be a feature of many models in which error correlations are
due to an unobserved common factor, including mismeasured
regressor models. Associated two-stage least squares and GMM
estimators are provided.

The proposed estimators appear to work well in both a small
Monte Carlo study (provided as a supplemental appendix to
this article) and in an empirical application. Citing working
paper versions of the present article, some articles by other
researchers listed earlier include empirical applications of the
proposed estimators and find them to work well in practice.

Unlike ordinary instruments, identification is obtained even
when all the elements of Z are also regressors in every model
equation. However, Z shares many of the convenient features of
instruments in ordinary two-stage least squares models. As with
ordinary instrument selection, given a set of possible choices for
Z, the estimators remain consistent if only a subset of the avail-
able choices are used, so variables that one is unsure about can
be safely excluded from the Z vector, with the only loss being
efficiency. Similarly, as with ordinary instruments, if some vari-
able Z̃ satisfies the conditions to be an element of Z, but is only
observed with classical measurement error, then this mismea-
sured Z̃ can still be used as an element of Z. If Z has more than
two elements (or more than one element in a triangular system),
then the model parameters are overidentified and standard tests
of overidentifying restrictions, such as Hansen’s (1982) test, can
be applied.

The identification here is based on higher moments and so is
likely to give noisier, less reliable estimates than identification

based on standard exclusion restrictions, but may be useful in
applications where traditional instruments are weak or nonexis-
tent. This article’s moments based on cov(Z, ε1ε2) = 0 can be
used along with traditional instruments to increase efficiency
and provide testable overidentifying restrictions.

This article also shows that bounds on estimated pa-
rameters can be obtained when the identifying assumption
cov(Z, ε1ε2) = 0 does not hold, provided that this covariance is
not too large relative to the heteroscedasticity in the errors. In a
numerical example, these bounds appear to be quite narrow.

The identification scheme in the article requires the endoge-
nous regressors to appear additively in the model. A good direc-
tion for future research would be searching for ways to extend
the identification method to allow for including the endogenous
regressors nonlinearly. Perhaps it would be possible to replace
linearity in endogenous regressors with local linearity, apply-
ing this article’s methods and assumptions to a kernel weighted
locally linear representation of the model.

It would also be worth considering whether additional mo-
ments for identification could be obtained by allowing for more
general dependence between Z and ε2

2 and corresponding zero
higher moments. One simple example is to let the assumptions
of Theorems 1 and 2 hold using � (Z) in place of Z for different
functions � , such as higher moments of Z, thereby providing
additional instruments for estimation.
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APPENDIX

Proof of Theorem 1. Define Wj by Equation (11) for
j = 1, 2. These Wj are identified by construction. Using
the Assumptions, substituting Equations (6) and (7) for
Y1 and Y2 in the definitions of W1 and W2 shows that
W1 = ε1 + ε2γ10 and W2 = ε2, so cov(Z, ε1ε2) = 0 is equiv-
alent to cov[Z, (W1 − γ10W2)W2] = 0. Solving for γ10 shows
that γ10 is identified by γ10 = cov(Z,W1W2)/cov(Z,W 2

2 ).
Given identification of γ10, the coefficients β10 and β20 are
identified by β10 = E(XX′)−1E[X(Y1 − Y2γ10)] and β20 =
E(XX′)−1E(XY2), which follow from E(Xεj ) = 0. Also, ε

is identified by ε1 = Y1 − X′β10 − Y2γ10 and ε2 = Y2 − X′β20.
Finally, to show Equation (8), observe that �ZX simplifies to:

�ZX =
(

E(XX′) E(XX′)β20

E(ZXε2) E(ZXε2)β20 + cov(Z, ε2
2)

)
,

which spans the same column space as(
E(XX′) 0
E(ZXε2) cov(Z, ε2

2)

)
,

and so has rank equal to the number of columns, which makes
�ZX��ZX nonsingular. Also

E

[(
X

[Z − E(Z)]ε2

)
Y1

]
= �ZX

(
β10

γ10

)
+
(

0
cov(Z, ε1ε2)

)
,

which then gives Equation (8).
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Proof of Theorem 2. Substituting Equations (9) and (10) for
Y1 and Y2 in the definitions of W1 and W2 shows that:

W1 = ε1 + ε2γ10

1 − γ10γ20
, W2 = ε2 + ε1γ20

1 − γ10γ20
, (A.1)

and solving these equations for ε yields:

ε1 = W1 − γ10W2, ε2 = W2 − γ20W1. (A.2)

Note that γ10γ20 �= 1 by Assumption A4. Using Equation ( A.3),
the condition cov(Z, ε1ε2) = 0 is equivalent to:

cov[Z, (W1 − γ10W2)(W2 − γ20W1)] = 0

(1 + γ10γ20)cov(Z,W1W2) − γ10cov(Z,W 2
2 )

− γ20cov(Z,W 2
1 ) = 0. (A.3)

Now 1 + γ10γ20 �= 0, since otherwise, it would follow from
Equation (A.3) that the rank of �W is less than 2. Define

λ1 = γ10

1 + γ10γ20
, λ2 = γ20

1 + γ10γ20
(A.4)

and λ = (λ1, λ2)′, then we have:

cov(Z,W1W2) = λ1cov
(
Z,W 2

2

)+ λ2cov
(
Z,W 2

1

) = �Wλ,

(A.5)

so λ is identified by:

λ = (�′
W�W )−1�′

W cov(Z,W1W2),

and �′
W�W is not singular because �W is rank 2. Solving Equa-

tion (28) for γ10 gives:

0 = λ2γ
2
10 − γ10 + λ1.

The above quadratic in γ10 has at most two roots, and for each
root, the corresponding value for γ20 is given by γ20 = γ10λ2/λ1.
Let (γ ∗

1 , γ ∗
2 ) denote one of these solutions. It can be seen from

λ1 =
(

1

γ10
+ γ20

)−1

, λ2 =
(

1

γ20
+ γ10

)−1

that the other solution must be (γ ∗−1
2 , γ ∗−1

1 ), since that yields
the same values for λ1 and λ2. One of these solutions must be
(γ10, γ20), and by Assumption A4, the other solution is not an
element of �, so (γ10, γ20) is identified. Note that the conditions
required for the quadratic to have real rather than complex or
imaginary roots are automatically satisfied, because (γ10, γ20) is
real.

Given identification of γ10 and γ20, the coefficients β10 and β20

are identified by β10 = E(XX′)−1E[X(Y1 − Y2γ10)] and β20 =
E(XX′)−1E[X(Y2 − Y1γ20)], which follow from E(Xεj ) = 0.
Finally, ε is now identified by ε1 = Y1 − X′β10 − Y2γ10 and
ε2 = Y2 − X′β20 − Y1γ20.

Proof of Lemma 1. Equation (A.1) in Theorem 2 was derived
using only Assumptions A1 and A2. Evaluating cov(Z,W 2

j )
using Equation (A.1) and the assumption that cov(Z, ε1ε2) = 0
gives, for each element Zk of Z(

cov(Zk,W
2
1 )

cov(Zk,W
2
2 )

)
=
(

1

1 − γ10γ20

)2
[

1 γ 2
10

γ 2
20 1

](
cov(Zk, ε

2
1)

cov(Zk, ε
2
2)

)
,

(A.6)

so �W is rank 2 if and only if �ε is rank 2 and the matrix relating
the two above is nonsingular, which requires |γ10γ20| �= 1.

Proof of Corollary 1. Using Equation (A.2) and following the
same steps as the proof of Theorem 2, the condition E(Zε1ε2) =
0 yields

E(ZW1W2) = λ1E
(
ZW 2

2

)+ λ2E
(
ZW 2

1

) = �Wλ

instead of Equation (A.5). This identifies λ and the rest of the
proof is the same.

Proof of Corollary 2. β20 and γ20, and hence ε2, are identified
from the usual moments that permit two-stage last squares esti-
mation. Each Wj is identified as in Theorem 1, and by Equation
(A.1), cov(Z, ε1ε2) = 0 implies cov[Z, (W1 − γ10W2)ε2] = 0,
which when solved for γ10 gives

γ10 = cov(Z,W1ε2)/cov(Z,W2ε2)

and cov(Z,W2ε2) = cov(Z, ε2
2) �= 0, so γ10 is identified. The

rest of the proof is the same as the end of the proof of
Theorem 2.

Proof of Corollaries 3 and 4. By Equations (9) and (10),
Q1 = Xε1, Q2 = Xε2 and Q4 = (Z − µ)ε1ε2, and E(Q3) = 0
makes µ = E(Z), so E(Q) = 0 is equivalent to E(Xε1) = 0,
E(Xε2) = 0, and cov(Z, ε1ε2) = 0. It then follows from Theo-
rem 2, or from Theorem 1 when γ20 = 0, that the only θ ∈ 	

that satisfies E[Q(θ, S)] = 0 is θ = θ0.

Proof of Theorem 3. First observe that if cov(Z, ε2
2) = 0, then

this fact along with the other assumptions would imply that the
conditions of Theorem 1 hold, giving point identification, which
is a special case of the statement of Theorem 3. So, for the re-
mainder of the proof, assume the case in which cov(Z, ε2

2) �= 0.
Note this means also that var(ε2

2) �= 0 and var(Z) �= 0, because
var(ε2

2) = 0 or var(Z) = 0 would imply cov(Z, ε2
2) = 0. These

inequalities will ensure that the denominators in the fractions
given below are nonzero.

By the definition of τ :[
corr (ε1ε2, Z) /corr

(
W 2

2 , Z
)]2 ≤ τ 2

[cov (ε1ε2, Z)]2

var (ε1ε2) var (Z)

var
(
W 2

2

)
var (Z)[

cov
(
W 2

2 , Z
)]2 ≤ τ 2

[cov (ε1ε2, Z)]2[
cov

(
W 2

2 , Z
)]2 ≤ var (ε1ε2)

var
(
W 2

2

) τ 2.
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Now by Assumption A1 and Equation (11), ε1 = W1 − W2γ10
and W2 = ε2, so[

cov
(
W1W2 − W 2

2 γ10, Z
)]2[

cov
(
W 2

2 , Z
)]2 ≤ var

(
W1W2 − W 2

2 γ10
)

var
(
W 2

2

) τ 2

[
cov (W1W2, Z) − cov

(
W 2

2 , Z
)
γ10
]2[

cov
(
W 2

2 , Z
)]2

≤ var (W1W2) − 2cov
(
W1W2, W

2
2 γ10

)+ var
(
W 2

2 γ10
)

var
(
W 2

2

) τ 2

[cov (W1W2, Z)]2−2cov (W1W2, Z) cov
(
W 2

2 , Z
)
γ10+[cov

(
W 2

2 , Z
)]2

γ 2
10[

cov
(
W 2

2 , Z
)]2

≤ var (W1W2) − 2cov
(
W1W2, W

2
2

)
γ10 + var

(
W 2

2

)
γ 2

10

var
(
W 2

2

) τ 2

(
cov (W1W2, Z)

cov
(
W 2

2 , Z
) )2

− 2
cov (W1W2, Z)

cov
(
W 2

2 , Z
) γ10 + γ 2

10

≤ var (W1W2)

var
(
W 2

2

) τ 2 − 2
cov

(
W1W2, W

2
2

)
var

(
W 2

2

) τ 2γ10 + τ 2γ 2
10,

and moving all the terms to the left gives:

cov (W1W2, Z)2

cov
(
W 2

2 , Z
)2 − var (W1W2)

var
(
W 2

2

) τ 2 + 2

[
cov

(
W1W2,W

2
2

)
var

(
W 2

2

) τ 2

− cov (W1W2, Z)

cov
(
W 2

2 , Z
) ] γ10 + (

1 − τ 2
)
γ 2

10 ≤ 0.

For 0 ≤ τ < 1, the coefficient of γ 2
10 is positive, so this inequal-

ity holds for all γ1 that lie between the roots of the corresponding
equality given by Equation (15).

Proof of Theorem 4. Like Theorem 1, substituting Equations
(19) and ( 20) for Y1 and Y2 in the Assumption B3 defini-
tions of W1 and W2 shows that Equations (A.1) and (A.2)
hold in this model. Identification of γ10 and γ20 then fol-
lows exactly as in the Proof of Theorem 1. Given identifica-
tion of γ10 and γ20, the functions g1(X) and g2(X) are identi-
fied by g1(X) = E(Y1 | X) − E(Y2 | X)γ10 and g2(X) = E(Y2 |
X) − E(Y1 | X)γ20, both of which follow from E(εj | X) = 0.
Finally, ε is now identified by ε1 = Y1 − g1(X) − Y2γ10 and
ε2 = Y2 − g2(X) − Y1γ20.

SUPPLEMENTAL MATERIALS

Appendix: The supplemental online appendix to this paper
contains a Monte Carlo analysis of the proposed estimators.
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